Background: The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana.
Results: The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing.
Conclusion: Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression machinery as a consequence of an increasing dependency on the host plant. A tentative assignment of the successive events in the adaptation of the plastid genomes to parasitism can be inferred from the current data set. This includes (1) a loss of non-coding regions in photosynthetic Cuscuta species that has resulted in a condensation of the plastid genome, (2) the simplification of plastid gene expression in species with largely impaired photosynthetic capacity and (3) the deletion of a significant part of the genetic information, including the information for the photosynthetic apparatus, in non-photosynthetic parasitic plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2089061 | PMC |
http://dx.doi.org/10.1186/1471-2229-7-45 | DOI Listing |
Mol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Nanchang University, Nanchang 330031, China.
is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming 650224, China.
is a genus of functional herbaceous plants in the Balsaminaceae, which are not only of great ornamental value and one of the world's top three flower bedding plants but also have a wide range of medicinal and edible uses. Currently, the taxonomy and phylogenetic relationships of species are still controversial. In order to better understand their chloroplast properties and phylogenetic evolution, nine plants (, , , , , , , , ) were sequenced, and their complete chloroplast genomes were analysed.
View Article and Find Full Text PDFGenes (Basel)
January 2025
College of Forestry, Guizhou University, Guiyang 550025, China.
: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.
View Article and Find Full Text PDFSci Rep
January 2025
The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China.
Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!