Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
1. Synaptic plasticity is thought to underlie learning and memory formation in the brain. However, how synaptic plasticity is induced during these processes remains controversial. An attractive candidate mechanism for learning at the neuronal level is spike timing-dependent synaptic plasticity (STDP), which depends on the precise (msec) timing of the synaptic input and the post-synaptic action potential. This temporal relationship resembles typical features of associative learning. Here, we review recent evidence suggesting that STDP is likely to underlie certain forms of learning. 2. First, we discuss the cellular mechanisms of STDP elucidated by in vitro experiments. A special focus is put onto aspects known to differ between in vitro preparations and the in vivo situation. 3. Second, we review the experimental induction of STDP in vivo, in various systems ranging from Xenopus tectum to human motor cortex. 4. The last part of the review addresses the question whether STDP can be induced by activity patterns occurring during normal behaviour. 5. We conclude that STDP is a robust phenomenon in vivo and a likely mechanism underlying sensory map plasticity in the neocortex. Further experimental evidence is required to determine whether STDP also has a role in more complex forms of learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.2007.04724.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!