The C-terminus of the most abundant and best-studied gap-junction protein, connexin43, contains multiple phosphorylation sites and protein-binding domains that are involved in regulation of connexin trafficking and channel gating. It is well-documented that SDS/PAGE of NRK (normal rat kidney) cell lysates reveals at least three connexin43-specific bands (P0, P1 and P2). P1 and P2 are phosphorylated on multiple, unidentified serine residues and are found primarily in gap-junction plaques. In the present study we prepared monoclonal antibodies against a peptide representing the last 23 residues at the C-terminus of connexin43. Immunofluorescence studies showed that one antibody (designated CT1) bound primarily to connexin43 present in the Golgi apparatus, whereas the other antibody (designated IF1) labelled predominately connexin43 present in gap junctions. CT1 immunoprecipitates predominantly the P0 form whereas IF1 recognized all three bands. Peptide mapping, mutational analysis and protein-protein interaction experiments revealed that unphosphorylated Ser364 and/or Ser365 are critical for CT1 binding. The IF1 paratope binds to residues Pro375-Asp379 and requires Pro375 and Pro377. These proline residues are also necessary for ZO-1 interaction. These studies indicate that the conformation of Ser364/Ser365 is important for intracellular localization, whereas the tertiary structure of Pro375-Asp379 is essential in targeting and regulation of gap junctional connexin43.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267357 | PMC |
http://dx.doi.org/10.1042/BJ20070550 | DOI Listing |
Cancers (Basel)
December 2024
School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
Connexin-43 (Cx43) is the most characterized gap junction protein, primarily involved in the Gap Junctional Intercellular Communication (GJIC) between adjacent cells to facilitate molecule exchange and the formation of a signaling network. It is increasingly evident that the importance of Cx43 is not only limited to its GJIC function, but rather includes its role in connecting the intracellular and extracellular environment by forming membrane hemichannels, as well as its intracellular signaling function mediated by its C-terminal tail (Cx43-CT). Notably, Cx43 has been implicated in a variety of cancers, with earlier notions suggesting a tumor-suppressor function, whereas new studies shed light on its pro-tumorigenic role.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFCell Mol Life Sci
April 2024
Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway.
Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells.
View Article and Find Full Text PDFBiomed Pharmacother
May 2024
Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania. Electronic address:
Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca, Mg, and phosphorylation.
View Article and Find Full Text PDFPhosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ~140 amino acid-long C terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!