Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.

Aging Cell

Department of Biochemistry and Molecular Genetics, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908, USA.

Published: October 2007

Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1474-9726.2007.00326.xDOI Listing

Publication Analysis

Top Keywords

calorie restriction
8
restriction extends
8
saccharomyces cerevisiae
8
extended lifespan
8
lifespan
6
cls
6
extends
4
chronological
4
extends chronological
4
chronological lifespan
4

Similar Publications

Beneficial Effects of a Moderately High-Protein Diet on Telomere Length in Subjects with Overweight or Obesity.

Nutrients

January 2025

Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.

Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.

View Article and Find Full Text PDF

The Impact of a Very-Low-Calorie Ketogenic Diet on Monocyte Subsets of Patients with Obesity: A Pilot Study.

Nutrients

January 2025

Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.

Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.

View Article and Find Full Text PDF

Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase.

View Article and Find Full Text PDF

: Anorexia nervosa (AN) is a complex psychiatric disorder characterized by an extreme fear of gaining weight, leading to severe calorie restriction and weight loss. Beyond its psychiatric challenges, AN has significant physical consequences affecting multiple organ systems. Recent research has increasingly focused on the interplay between autoantibodies, oxidative stress, and nutritional state in this condition.

View Article and Find Full Text PDF

Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!