Transferrins have been extensively studied in order to understand how they reversibly bind and release iron. Human serum transferrin (hTF) is a single polypeptide chain that folds into two lobes (N- and C-lobe); each lobe binds a single ferric ion. Iron release induces a large conformational change in each lobe. At the putative endosomal pH of 5.6, measurement of the increase in intrinsic fluorescence upon iron release from the recombinant N-lobe yields two rate constants: 8.9 min-1 and 1.3 min-1. Direct monitoring of iron release from the N-lobe at pH 5.6 (by the decrease in absorbance at 470 nm) gives a single rate constant of 9.1 min-1, definitively establishing that the faster rate constant in the fluorescent studies is due to iron release. To further elucidate the molecular basis of the intrinsic fluorescence change (and the source of the slower rate constant), we examined the contributions of the three individual tryptophan residues in the N-lobe (Trp8, Trp128, and Trp264). Three double mutants, each containing the single remaining tryptophan residue, were produced. In the iron-bound N-lobe, Trp128 and Trp264 are quenched by iron and account for almost the entire fluorescent signal when iron is released. As for the wild-type N-lobe, the fluorescence increase for each of these mutants is best fit by a double-exponential function indicating two processes. Trp8 is severely quenched under all conditions, making virtually no contribution to the signal. Additionally, a mutant lacking all three Trp residues allows assignment of the fluorescent signal completely to the three tryptophan residues and observation of the presence of one (or more) tyrosinates in the N-lobe that have physiological significance in the uptake of iron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi602425c | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFDalton Trans
January 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)(esc)]ClO with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)(esc)]ClO with the Hammett constants of the substituents in 2,2'-bipy ligands.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:
Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!