Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study sought to evaluate the effect of a newly synthesized selenium compound, dicholesteroyl diselenide (DCDS) and diphenyl diselenide (DPDS) on the activities of delta-aminolevulinate dehydratase and Na+/K+-ATPase in the rat brain. The glutathione peroxidase mimetic activity of the two compounds as well as their ability to oxidize mono- and di- thiols were also evaluated. The antioxidant effects were tested by measuring the ability of the compounds to inhibit the formation of thiobarbituric acid reactive species and also their ability to inhibit the formation of protein carbonyls. The results show that DPDS exhibited a higher glutathione peroxidase mimetic activity as well as increased ability to oxidize di-thiols than DCDS. In addition, while DPDS inhibited the formation of thiobarbituric acid reactive species and protein carbonyls, DCDS exhibited a prooxidant effect in all the concentration range (20-167 microM) tested. Also the activities of cerebral delta-aminolevulinate dehydratase and Na+/K+ ATPase were significantly inhibited by DPDS but not by DCDS. In addition, the present results suggested that the inhibition of Na+/K+ ATPase by organodiselenides, possibly involves the modification of the thiol group at the ATP binding site of the enzyme. In conclusion, the results of the present investigation indicated that the non-selenium moiety of the organochalcogens can have a profound effect on their antioxidant activity and also in their reactivity towards SH groups from low-molecular weight molecules and from brain proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-007-9432-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!