Background: The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.

Methodology/principal Findings: We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.

Conclusions/significance: This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1940325PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000728PLOS

Publication Analysis

Top Keywords

cold environments
8
18s rrna
8
rrna gene
8
protistan diversity
4
diversity arctic
4
arctic case
4
case paleoclimate
4
paleoclimate shaping
4
shaping modern
4
modern biodiversity?
4

Similar Publications

Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.

View Article and Find Full Text PDF

Under confining pressure, rocks transition from brittle failure to plastic failure, and residual strength exists after complete failure. However, in the process of establishing rock damage constitutive models, the strength criteria used usually do not consider residual stress. In cold region engineering, the freeze-thaw effect caused by temperature changes should be considered in the constitutive model, and strength criteria should also be introduced.

View Article and Find Full Text PDF

TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.

View Article and Find Full Text PDF

Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds.

View Article and Find Full Text PDF

Helotiales, a diverse fungal order within Leotiomycetes (Ascomycota), comprises over 6000 species occupying varied ecological niches, from plant pathogens to saprobes and symbionts. Despite their importance, their genetic adaptations to temperature and environmental conditions are understudied. This study investigates temperature adaptations in infection genes and substrate degradation genes through a comparative genomics analysis of 129 Helotiales species, using the newly sequenced genomes of and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!