Myofibrillar protein turnover: the proteasome and the calpains.

J Anim Sci

Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.

Published: April 2008

Metabolic turnover of myofibrillar proteins in skeletal muscle requires that, before being degraded to AA, myofibrillar proteins be removed from the myofibril without disrupting the ability of the myofibril to contract and develop tension. Skeletal muscle contains 4 proteolytic systems in amounts such that they could be involved in metabolic protein turnover: 1) the lysosomal system, 2) the caspase system, 3) the calpain system, and 4) the proteasome. The catheptic proteases in lysosomes are not active at the neutral pH of the cell cytoplasm, so myofibrillar proteins would have to be degraded inside lysosomes if the lysosomal system were involved. Lysosomes could not engulf a myofibril without destroying it, so the lysosomal system is not involved to a significant extent in metabolic turnover of myofibrillar proteins. The caspases are not activated until initiation of apoptosis, and, therefore, it is unlikely that the caspases are involved to a significant extent in myofibrillar protein turnover. The calpains do not degrade proteins to AA or even to small peptides and do not catalyze bulk degradation of the sarcoplasmic proteins, so they cannot be the only proteolytic system involved in myofibrillar protein turnover. Research during the past 20 yr has shown that the proteasome is responsible for 80 to 90% of total intracellular protein turnover, but the proteasome degrades peptide chains only after they have been unfolded, so that they can enter the catalytic chamber of the proteasome. Thus, although the proteasome can degrade sarcoplasmic proteins, it cannot degrade myofibrillar proteins until they have been removed from the myofibril. It remains unclear how this removal is done. The calpains degrade those proteins that are involved in keeping the myofibrillar proteins assembled in myofibrils, and it was proposed over 30 yr ago that the calpains initiated myofibrillar protein turnover by disassembling the outer layer of proteins from the myofibril and releasing them as myofilaments. Such myofilaments have been found in skeletal muscle. Other studies have indicated that individual myofibrillar proteins can exchange with their counterparts in the cytoplasm; it is unclear whether this can be done to an extent that is consistent with the rate of myofibrillar protein turnover in living muscle. It seems that both the calpains and the proteasome are responsible for myofibrillar protein turnover, but the mechanism is still unknown.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2007-0395DOI Listing

Publication Analysis

Top Keywords

protein turnover
32
myofibrillar proteins
28
myofibrillar protein
24
myofibrillar
13
turnover proteasome
12
proteins
12
skeletal muscle
12
lysosomal system
12
system involved
12
turnover
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!