Prognostic Bayesian networks II: an application in the domain of cardiac surgery.

J Biomed Inform

Department of Medical Informatics, Academic Medical Center (AMC), P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.

Published: December 2007

AI Article Synopsis

  • A prognostic Bayesian network (PBN) is a new model that provides a dynamic approach to prognosis, focusing on process-oriented outcomes.
  • In this study, a PBN was developed for cardiac surgery using clinical data to predict hospital mortality, with its performance compared to a traditional network model.
  • The results indicate that PBNs are effective prognostic tools in healthcare, highlighting the benefits of the unique learning procedure used to create them.

Article Abstract

A prognostic Bayesian network (PBN) is new type of prognostic model that implements a dynamic, process-oriented view on prognosis. In a companion article, the rationale of the PBN is described, and a dedicated learning procedure is presented. This article presents an application here of in the domain of cardiac surgery. A PBN is induced from clinical data of cardiac surgical patients using the proposed learning procedure; hospital mortality is used as outcome variable. The predictive performance of the PBN is evaluated on an independent test set, and results were compared to the performance of a network that was induced using a standard algorithm where candidate networks are selected using the minimal description length principle. The PBN is embedded in the prognostic system ProCarSur; a prototype of this system is presented. This application shows PBNs as a useful prognostic tool in medical processes. In addition, the article shows the added value of the PBN learning procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2007.07.004DOI Listing

Publication Analysis

Top Keywords

learning procedure
12
prognostic bayesian
8
application domain
8
domain cardiac
8
cardiac surgery
8
pbn
6
prognostic
5
bayesian networks
4
networks application
4
surgery prognostic
4

Similar Publications

Background: Cancer is a leading cause of global mortality, accounting for nearly 10 million deaths in 2020. This is projected to increase by more than 60% by 2040, particularly in low- and middle-income countries. Yet, palliative and psychosocial oncology care is very limited in these countries.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.

View Article and Find Full Text PDF

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!