New properties of inclusion bodies with implications for biotechnology.

Biotechnol Appl Biochem

Department of Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.

Published: April 2008

Human G-CSF (granulocyte colony-stimulating factor) is a well-known biopharmaceutical drug being mostly produced by overexpression in Escherichia coli, where it appears in the form of IBs (inclusion bodies). Following our initial findings that properties of inclusion bodies strongly depend on the growth conditions used, especially growth temperature, we compared the characteristics of the G-CSF inclusion bodies prepared at two different temperatures, namely 42 and 25 degrees C. IBs formed at higher growth temperatures have properties similar to the usually described IBs, containing mainly denatured recombinant protein and being almost completely insoluble in aqueous solutions containing mild detergents or low concentrations of denaturants. In contrast, when produced at lower growth temperature of 25 degrees C, IBs show significantly different properties. Such IBs contain a significant proportion of G-CSF that is easily and directly extractable in the biologically active form, using non-denaturing solutions, which can be exploited for environmentally friendly biotechnological production. Irrespective of the production temperature, a significant decrease in IB volume was observed when transferring IBs from neutral to acidic (around 4) pH. Irreversible contraction of IBs at low pH was documented at the macro- and micro-scopic level using electron microscopy as a characterization tool. Together with volume decrease, a higher density, and thus decreased solubility, of IBs was observed at low pH, resulting in slower and less efficient extractability of the target protein.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BA20070140DOI Listing

Publication Analysis

Top Keywords

inclusion bodies
16
properties inclusion
8
ibs
8
growth temperature
8
degrees ibs
8
properties
4
bodies
4
bodies implications
4
implications biotechnology
4
biotechnology human
4

Similar Publications

Hepatic fibrinogen storage disease is an uncommon autosomal dominant hereditary illness marked by hypofibrinogenemia and the accumulation of variant fibrinogen in the hepatic endoplasmic reticulum. We present an asymptomatic 15-month-old male with elevated liver enzymes. Test results indicate hypofibrinogenemia.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.

View Article and Find Full Text PDF

Erosive tooth wear (ETW) is a prevalent oral condition with varying etiology, including erosion, abrasion, abfraction, and attrition. It is reported in the literature in different nomenclatures, hindering the ability to identify the emerging trends and influential scholarly works and bodies within this field. Using a bibliometric analysis approach, this study aims to evaluate the trends, themes, and productivity of the research on ETW condition while respecting its different terminologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!