Neurogenin 3 is essential for enteroendocrine cell development; however, it is unknown whether this transcription factor is sufficient to induce an endocrine program in the intestine or how it affects the development of other epithelial cells originating from common progenitors. In this study, the mouse villin promoter was used to drive Neurogenin 3 expression throughout the developing epithelium to measure the affect on cell fate. Although the general morphology of the intestine was unchanged, transgenic founder embryos displayed increased numbers of cells expressing the pan-endocrine marker chromogranin A. Accordingly, expression of several hormones and pro-endocrine transcription factors was increased in the transgenics suggesting that Neurogenin 3 stimulated a program of terminal enteroendocrine cell development. To test whether increased endocrine cell differentiation affected the development of other secretory cell lineages, we quantified goblet cells, the only other secretory cell formed in embryonic intestine. The Neurogenin 3-expressing transgenics had decreased numbers of goblet cells in correspondence to the increase in endocrine cells, with no change in the total secretory cell numbers. Thus, our data suggest that Neurogenin 3 can redirect the differentiation of bipotential secretory progenitors to endocrine rather than goblet cell fate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679162 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2007.07.015 | DOI Listing |
Aging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFGenes Dev
December 2024
Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York 10025, USA.
The pan-neuronally expressed and phylogenetically conserved CUT homeobox gene orchestrates pan-neuronal gene expression throughout the nervous system of As in many other species, including humans, is encoded by a complex locus that also codes for a Golgi-localized protein, called CASP (Cux1 alternatively spliced product) in humans and CONE-1 ("CASP of nematodes") in How gene expression from this complex locus is controlled-and, in , directed to all cells of the nervous system-has not been investigated. We show here that pan-neuronal expression of CEH-44/CUX is controlled by a pan-neuronal RNA splicing factor, UNC-75, the homolog of vertebrate CELF proteins. During embryogenesis, the locus exclusively produces the Golgi-localized CONE-1/CASP protein in all tissues, but upon the onset of postmitotic terminal differentiation of neurons, UNC-75/CELF induces the production of the alternative CEH-44/CUX CUT homeobox gene-encoding transcript exclusively in the nervous system.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA. Electronic address:
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1 hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!