Valproic acid metabolites inhibit dihydrolipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation.

Biochim Biophys Acta

Centro de Patogénese Molecular, Unidade de Biologia Molecular e Biopatologia Experimental, (UBMBE) Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

Published: September 2007

The effect of the antiepileptic drug valproic acid (VPA) on mitochondrial oxidative phosphorylation (OXPHOS) was investigated in vitro. Two experimental approaches were used, in the presence of selected respiratory-chain substrates: (1) formation of ATP in digitonin permeabilized rat hepatocytes and (2) measurement of the rate of oxygen consumption by polarography in rat liver mitochondria. VPA (0.1-1.0 mM) was found to inhibit oxygen consumption and ATP synthesis under state 3 conditions with glutamate and 2-oxoglutarate as respiratory substrates. No inhibitory effect on OXPHOS was observed when succinate (plus rotenone) was used as substrate. We tested the hypothesis that dihydrolipoyl dehydrogenase (DLDH) might be a direct target of VPA, especially its acyl-CoA intermediates. Valproyl-CoA (0.5-1.0 mM) and valproyl-dephosphoCoA (0.5-1.0 mM) both inhibited the DLDH activity, acting apparently by different mechanisms. The decreased activity of DLDH induced by VPA metabolites may, at least in part, account for the impaired rate of oxygen consumption and ATP synthesis in mitochondria if 2-oxoglutarate or glutamate were used as respiratory substrates, thus limiting the flux of these substrates through the citric acid cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2007.06.007DOI Listing

Publication Analysis

Top Keywords

oxygen consumption
12
valproic acid
8
dihydrolipoyl dehydrogenase
8
oxidative phosphorylation
8
rate oxygen
8
consumption atp
8
atp synthesis
8
respiratory substrates
8
acid metabolites
4
metabolites inhibit
4

Similar Publications

Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.

View Article and Find Full Text PDF

Targeting HNRNPA2B1 to Overcome Chemotherapy Resistance in Gastric Cancer Stem Cells: Mechanisms and Therapeutic Potential.

J Biol Chem

January 2025

Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, Jilin Province, China. Electronic address:

Gastric cancer (GC) remains a significant global health challenge, particularly due to the resistance of gastric cancer stem cells (GCSCs) to chemotherapy. This study investigates the role of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), a member of the heterogeneous nuclear ribonucleoproteins (hnRNPs), in modulating mitochondrial metabolic reprogramming and contributing to chemoresistance in GCSCs. Through extensive analysis of tumor cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets, HNRNPA2B1 was identified as a key regulator in GCSCs, correlating with poor prognosis and enhanced resistance to chemoresistance.

View Article and Find Full Text PDF

Effect of Aerobic Exercises on Lung Function in Women With Fibromyalgia: A Randomized Controlled Trial.

J Phys Act Health

January 2025

Department of Physiotherapy, Faculty of Allied Medical Sciences, Middle East University, Amman, Jordan.

Background: Aerobic exercises (AEs) have gained much interest in managing fibromyalgia (FM). This trial aimed to find out how AEs affect women with FM in terms of lung function, chest expansion, dyspnea, exercise capacity, and quality of life.

Methods: Eighty FM-diagnosed women were allocated randomly into 2 equal-sized groups.

View Article and Find Full Text PDF

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!