Six highly temperature-sensitive ion channels of the transient receptor potential (TRP) family have been implicated to mediate temperature sensation. These channels, expressed in sensory neurons innervating the skin or the skin itself, are active at specific temperatures ranging from noxious cold to burning heat. In addition to temperature sensation thermoTRPs are the receptors of a growing number of environmental chemicals (chemesthesis). Recent studies have provided some striking new insights into the molecular mechanism of thermal and chemical activation of these biological thermometers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080617PMC
http://dx.doi.org/10.1016/j.conb.2007.07.014DOI Listing

Publication Analysis

Top Keywords

temperature sensation
8
chills chilis
4
chilis mechanisms
4
mechanisms thermosensation
4
thermosensation chemesthesis
4
chemesthesis thermotrps
4
thermotrps highly
4
highly temperature-sensitive
4
temperature-sensitive ion
4
ion channels
4

Similar Publications

Effect of air temperature in indoor transition spaces on the thermal response of occupant during summer.

Sci Rep

January 2025

Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.

During the hot summer months, the significant temperature disparity between outdoor and indoor air-conditioned spaces can lead to thermal discomfort and pose a potential health risk. Transition areas such as corridors and elevator lobbies, serving as intermediary zones connecting indoors and outdoors, have been found effective in mitigating this thermal discomfort. In this study, three different temperatures (25 °C-case 1, 27 °C-case 2, and 29 °C-case 3) were employed to investigate the dynamic physiological regulation and thermal perception response of individuals when transitioning from an outdoor environment into an indoor neutral room through a transition space.

View Article and Find Full Text PDF

Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing.

ACS Nano

January 2025

College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China.

Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals.

Bioessays

December 2024

Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.

In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling.

View Article and Find Full Text PDF

Window entrapment trauma in cats: clinical, neurological and clinicopathological findings and outcome (70 cases).

J Feline Med Surg

December 2024

Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Objectives: Window entrapment in cats can lead to reduced blood flow to the spinal cord, muscles and nerves, resulting in ischaemic neuromyelomyopathy. The severity and duration of entrapment greatly influence clinical and neurological outcomes, as well as prognosis. The aim of the present retrospective multicentric study (2005-2022) was to describe clinical, neurological and selected clinicopathological findings, as well as the outcome of cats trapped in bottom-hung windows, presented to both first-opinion and referral-only clinics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!