A microfluidic chip featuring parallel gradient-generating networks etched on glass plate was designed and fabricated. The dam and weir structures were fabricated to facilitate cell positioning and seeding, respectively. The microchip contains five gradient generators and 30 cell chambers where the resulted concentration gradients of drugs are delivered to stimulate the on-chip cultured cells. This microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell operations including seeding, culture, stimulation and staining into a chip. Steady parallel concentration gradients were generated by flowing two fluids in each network. The microchip described above was applied in studying the role of reduced glutathione (GSH) in MCF-7 cells' chemotherapy sensitivity. The parental breast cancer cell line, MCF-7 and the derived adriamycin resistant cell line MCF-7(adm) were treated with concentration gradients of arsenic trioxide (ATO) and N-acetyl cysteine (NAC) for GSH modulation, followed by exposure to adriamycin. The intracellular GSH level and cell viability were assessed by fluorescence image analysis. GSH levels of both cell lines were down-regulated upon ATO treatment and up-regulated upon NAC treatment. For both cell lines, suppression of intracellular GSH by treatment with ATO has been shown to increase chemotherapy sensitivity; conversely, elevation of intracellular GSH by treatment with NAC leads to increased drug resistance. The results indicated that high intracellular GSH level has negative effect on chemotherapy sensitivity, while depletion of cellular GSH may serve as an effective way to improve chemotherapy sensitivity. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, thus, holds great potential for extrapolation to the high-content drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2007.06.014 | DOI Listing |
Orphanet J Rare Dis
January 2025
Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.
Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, USA.
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.
View Article and Find Full Text PDFAnal Biochem
January 2025
Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.
FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline, memory loss, and impaired daily functioning. As the global population ages, the prevalence of AD continues to rise, emphasising the urgent need for effective preventive and therapeutic strategies. Carotenoids, a group of naturally occurring pigments with antioxidant properties, have gained attention for their potential neuroprotective effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!