Purpose: To study the effect of encapsulation of recombinant adenovirus type 5 encoding Beta-galactosidase (Ad5-Betagal) in poly (D,Llactic-co-glycolic acid) (PLGA) microspheres on viral delivery to professional antigen presenting cells (APCs) in vitro, viral dissemination in vivo, and induction of protective immune responses in vivo.

Methods: PLGA microspheres containing Ad5-alphagal were prepared by a double emulsion solvent evaporation method. Encapsulation efficiency, in vitro release profile, in vitro cellular uptake and in vivo biodistribution of Ad5-alphagal loaded PLGA microspheres were determined using 125I-labeled Ad5-alphagal (125I-Ad5-alphagal). To evaluate the potential of PLGA microsphere delivery of Ad-alphagal for induction of antigen specific immune responses in vivo, Balb/c mice were immunized with the subcutaneous injection of the formulations then splenocytes of the immunized mice were assayed for cytotoxic T lymphocyte (CTL) activity against a variety of target cells in a 51Cr-release assay. Anti-alphagal antibody responses were assessed in the sera of the immunized mice by enzyme linked immunosorbent assay (ELISA). The effect of encapsulated Ad5-alphagal immunization on protection against a tumor challenge was tested in a murine artificial metastatic lung tumor model with alphagalexpressing tumor cells, CT26.CL25.

Results: PLGA microspheres encapsulated Ad5-alphagal with 24.8 +/- 1.4 % encapsulation efficiency and 11.4 +/- 3.6 % of the encapsulated virus retained the functional activity. In vitro release study showed slow release (15% in 11 days) of the virus from the microspheres. PLGA microsphere delivery of Ad5-alphagal resulted in enhanced uptake of the virus by APCs with an increase in the transgene expression in vitro. Administration of the virus in the encapsulated form resulted in substantially decreased viral dissemination to remote organs and tissues as compared to the free virus. Encapsulated virus were capable of eliciting antigen specific CTL as well as antibody responses against alphagal and induced protective immune responses against lethal tumor challenge at a significantly lower infectious viral dose as compared to the free virus.

Conclusion: PLGA microsphere with Ad5-alphagal enhances the delivery of virus to APCs with reduced viral dissemination in other organs and induces protective antigen specific immune responses against viral encoded transgene.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plga microspheres
16
immune responses
16
microsphere delivery
12
viral dissemination
12
plga microsphere
12
antigen specific
12
protective immune
8
encapsulation efficiency
8
vitro release
8
specific immune
8

Similar Publications

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections.

ACS Appl Mater Interfaces

January 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

Stimuli-responsive dual-drug loaded microspheres with differential drug release for antibacterial and wound repair promotion.

Colloids Surf B Biointerfaces

December 2024

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China. Electronic address:

The healing of infected wounds is a complex and dynamic process requiring tailored treatment strategies that address both antimicrobial and reparative needs. Despite the development of numerous drugs, few approaches have been devised to optimize the timing of drug release for targeting distinct phases of infection control and tissue repair, limiting the overall treatment efficacy. Here, a stimuli-responsive microsphere encapsulating dual drugs was developed to facilitate differential drug release during distinct phases of antibacterial and repair promotion, thereby synergistically enhancing wound healing.

View Article and Find Full Text PDF

Dual-phase SilMA hydrogel: a dynamic scaffold for sequential drug release and enhanced spinal cord repair via neural differentiation and immunomodulation.

Front Bioeng Biotechnol

November 2024

Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Introduction: Spinal cord injury (SCI) is a severe central nervous system disorder that results in significant sensory, motor, and autonomic dysfunctions. Current surgical techniques and high-dose hormone therapies have not achieved satisfactory clinical outcomes, highlighting the need for innovative therapeutic strategies.

Methods: In this study, we developed a Dual-Phase Silk Fibroin Methacryloyl (SilMA) hydrogel scaffold (DPSH) that incorporates PLGA microspheres encapsulating neurotrophin-3 (NT-3) and angiotensin (1-7) (Ang-(1-7)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!