Diagnosis and treatment of acute promyelocytic leukemia.

Curr Oncol Rep

Leukemia Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.

Published: September 2007

Acute promyelocytic leukemia (APL), characterized by a translocation between the promyelocytic leukemia gene (PML) on chromosome 15 and the retinoic acid receptor-alpha (RARalpha) gene on chromosome 17, has become a model for targeted treatment of cancer. Advances in our understanding of the fundamental biology of this disease have led to the development of tools for diagnosis, monitoring of minimal residual disease, and detection of early relapse. Differentiation therapy with all-trans retinoic acid in combination with chemotherapy has significantly improved survival in patients with APL. Moreover, arsenic trioxide, which induces differentiation and apoptosis of APL cells, has become standard treatment for relapsed disease, and its role in the treatment of newly diagnosed APL is under active investigation. The lessons learned from APL have broad applications to other forms of leukemia and to cancer in general, whereby molecularly targeted therapy is directed to specifically defined subgroups.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11912-007-0045-9DOI Listing

Publication Analysis

Top Keywords

promyelocytic leukemia
12
acute promyelocytic
8
retinoic acid
8
apl
5
diagnosis treatment
4
treatment acute
4
leukemia
4
leukemia acute
4
leukemia apl
4
apl characterized
4

Similar Publications

This study analyzes the laboratory characteristics and prognosis of patients between PML-RARα negative APL and PML-RARα positive APL and compares the differences in order to improve the understanding of this rare APL and guide clinical diagnosis and treatment. A total of 81 patients with newly diagnosed APL based on bone marrow cell morphology were included, with 14 in the PML-RARα gene negative group and 67 in the PML-RARα gene positive group. The sex, age, peripheral blood routine test, coagulation related indicators, bone marrow cell morphology, flow cytometric immunophenotype, abnormal chromosome expression and prognosis of the 2 groups were analyzed and compared.

View Article and Find Full Text PDF

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF

CPSF6-RARγ interacts with histone deacetylase 3 to promote myeloid transformation in RARG-fusion acute myeloid leukemia.

Nat Commun

January 2025

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.

Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies.

View Article and Find Full Text PDF

Cell-free transcription amplification-based split-type electrochemical sensor using enzyme-linked magnetic microbeads for minimal residual leukemia detection.

Talanta

January 2025

Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, 350122, China; Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. Electronic address:

Constrained by detecting techniques, patients with acute promyelocytic leukemia (APL) are often confronted with minimal residual disease (MRD) and a high risk of relapse. Thus, a pragmatic and robust method for MRD monitoring is urgently needed. Herein, a novel split-type electrochemical sensor (E-sensor) was developed by integrating nucleic acid sequence-based amplification (NASBA) with enzyme-linked magnetic microbeads (MMBs) for ultra-sensitive detection of the PML/RARα transcript.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!