Drugs of abuse, including alcohol, can induce dependency formation and/or brain damage in brain regions important for cognition. 'High-throughput' approaches, such as cDNA microarray and proteomics, allow the analysis of global expression profiles of genes and proteins. These technologies have recently been applied to human brain tissue from patients with psychiatric illnesses, including substance abuse/dependence and appropriate animal models to help understand the causes and secondary effects of these complex disorders. Although these types of studies have been limited in number and by proteomics techniques that are still in their infancy, several interesting hypotheses have been proposed. Focusing on CNS proteomics, we aim to review and update current knowledge in this rapidly advancing area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/14789450.4.4.539 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.
Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.
Alzheimers Dement
December 2024
University of Georgia, Athens, GA, USA.
Background: Inflammatory cells play a key role in the pathophysiology of AD and other neurodegenerative disorders. Glycans are known to mediate inflammatory cell activation and migration yet very little is understood about the expression of glycans, glycoproteins, and other glycoconjugates at the CP which serves as a gateway for peripheral immune cells into the brain. In a familial AD mouse model, we observed increased expression of Siglec-F-recognized glycans on CP epithelial cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD), increasing risk from 3-12-fold relative to the common ε3 allele. Seminal studies have revealed that age-related changes in blood-CNS communication regulate cognitive function. More recently, youth-associated blood-borne proteins revitalize the aged brain, improving hippocampal function and increasing adult neurogenesis and dendritic spine plasticity.
View Article and Find Full Text PDFAging Cell
January 2025
MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China.
Microglia, as resident immune cells in the central nervous system (CNS), play a crucial role in maintaining homeostasis and phagocytosing metabolic waste in the brain. Senescent microglia exhibit decreased phagocytic capacity and increased neuroinflammation through senescence-associated secretory phenotype (SASP). This process contributes to the development of various neurodegenerative diseases, including Alzheimer's disease (AD).
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
Preclinical Safety (PCS), Novartis Biomedical Research, Cambridge, MA, USA.
Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!