We present an efficient method to compute nonadiabatic couplings (NACs) between the electronically ground and excited states of molecules, within the framework of time-dependent density functional theory (TDDFT) in frequency domain. Based on the comparison of dynamic polarizability formulated both in the many-body wave function form and the Casida formalism, a rigorous expression is established for NACs, which is similar to the calculation of oscillator strength in the Casida formalism. The adiabatic local density approximation (ALDA) gives results in reasonable accuracy as long as the conical intersection (ci) is not approached too closely, while its performance quickly degrades near the ci point. This behavior is consistent with the real-time TDDFT calculation. Through the use of modified linear response theory together with the ground-state-component separation scheme, the performance of ALDA can be greatly improved, not only in the vicinity of ci but also for Rydberg transitions and charge-transfer excitations. Several calculation examples, including the quantization of NACs from the Jahn-Teller effect in the H3 system, have been given to show that TDDFT can efficiently give NACs with an accuracy comparable to that of wave-function-based methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2755665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!