Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hyaluronan (HA) is a sugar polymer of a repeating disaccharide, beta1-3 D-N-acetylglucosamine (GlcNAc) beta1-4 D-glucuronic acid (GlcA). It finds applications in numerous biomedical procedures such as ophthalmic surgery and osteoarthritis treatment. Until recently, the only commercial sources were extraction of rooster combs and from fermentation of pathogenic Streptococcus. In this work, we demonstrate that metabolic engineering strategies enable the recombinant synthesis of hyaluronan in a safe microorganism. Agrobacterium sp. ATCC 31749 is a commercial production strain for a food polymer, Curdlan. A broad host range expression vector was successfully developed to express the 3 kb HA synthase gene from Pasteurella multocida, along with a kfiD gene encoding UDP-glucose dehydrogenase from Escherichia coli K5 strain. Coexpression of these two heterologous enzymes enables Agrobacterium to produce HA. Hyaluronan was accumulated up to 0.3 g/L in shaker flask cultivation. The molecular weight of the polymer from various Agrobacterium strains is in the range of 0.7-2 MD. To our knowledge, this is the first successful recombinant hyaluronan synthesis in a Gram-negative bacterium that naturally produces a food product. The ease of genetic modifications provides future opportunities to tailor properties of polymers for specific applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp070113n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!