AI Article Synopsis

  • The genome of Arabidopsis thaliana contains 13 oxidosqualene cyclases, and this study focuses on the newly characterized baruol synthase (BARS1), which produces one major product (baruol) and 22 minor triterpene products.
  • BARS1 showcases an unexpected variety of molecular structures and reactions by deprotonating intermediates at 14 distinct sites, challenging the existing understanding of triterpene biosynthesis that assumes tightly regulated pathways.
  • The results imply that mechanistic diversity is more common in triterpene biosynthesis than previously thought, with product specificity achieved by limiting alternative production pathways.

Article Abstract

The genome of the model plant Arabidopsis thaliana encodes 13 oxidosqualene cyclases, 9 of which have been characterized by heterologous expression in yeast. Here we describe another cyclase, baruol synthase (BARS1), which makes baruol (90%) and 22 minor products (0.02-3% each). This represents as many triterpenes as have been reported for all other Arabidopsis cyclases combined. By accessing an extraordinary repertoire of mechanistic pathways, BARS1 makes numerous skeletal types and deprotonates the carbocation intermediates at 14 different sites around rings A, B, C, D, and E. This undercurrent of structural and mechanistic diversity in a superficially accurate enzyme is incompatible with prevailing concepts of triterpene biosynthesis, which posit tight control over the mechanistic pathway through cation-pi interactions, with a single proton acceptor in a hydrophobic active site. Our findings suggest that mechanistic diversity is the default for triterpene biosynthesis and that product accuracy results from exclusion of alternative pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja073133uDOI Listing

Publication Analysis

Top Keywords

triterpene biosynthesis
12
prevailing concepts
8
concepts triterpene
8
mechanistic diversity
8
oxidosqualene cyclase
4
cyclase numerous
4
numerous products
4
products diverse
4
diverse mechanisms
4
mechanisms challenge
4

Similar Publications

Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.

Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.

View Article and Find Full Text PDF

Excessive exercise can lead to fatigue, consequently affect exercise performance, and further have an adverse impact to human health. The synergistic effects of ginsenosides, salidroside, and syringin on improving exercise performance remain unknown. Hence, the effects of Chinese herb powder (CHP) which consisted of bioactive compounds such as ginsenosides (Rg1, Re, and Rb1), salidroside, and syringin on exercise performance, energy metabolism, tissue damage, antioxidant activity, and inflammatory cytokine were investigated in exhaustive exercise rats.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how asiatic acid (AA) affects the drug resistance in human leukemia cells (K562/ADR) resistant to adriamycin (ADR).
  • AA was found to reduce the resistance of these cells and enhance the effectiveness of ADR, as shown by various assays including CCK-8 and flow cytometry.
  • The results indicated that AA down-regulates the expression of certain proteins related to drug resistance, suggesting a potential mechanism for reversing resistance in these cancer cells.
View Article and Find Full Text PDF

Background/aim: Hederagenin (3β,4α-3,23-dihydroxyolean-12-en-28-oic acid) is a natural pentacyclic triterpene that is present in various medicinal plants and exhibits pharmacological activities against various diseases, including cancer. The aim of the study was to investigate the effect of Aq3639 (3β-[(O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl)oxy]olean-12-en-28-oic acid), a hederagenin glycoside comprising hederagenin and a disaccharide of L-rhamnose and L-arabinose, on breast cancer cells.

Materials And Methods: Aq3639 was isolated from the pericarps of Akebia quinata fruits, and its effects on cells from the human breast cell line MCF-7 were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!