Neurotransmitter:sodium symporters (NSS) have a critical role in regulating neurotransmission and are targets for psychostimulants, anti-depressants and other drugs. Whereas the non-homologous glutamate transporters mediate chloride conductance, in the eukaryotic NSS chloride is transported together with the neurotransmitter. In contrast, transport by the bacterial NSS family members LeuT, Tyt1 and TnaT is chloride independent. The crystal structure of LeuT reveals an occluded binding pocket containing leucine and two sodium ions, and is highly relevant for the neurotransmitter transporters. However, the precise role of chloride in neurotransmitter transport and the location of its binding site remain elusive. Here we show that introduction of a negatively charged amino acid at or near one of the two putative sodium-binding sites of the GABA (gamma-aminobutyric acid) transporter GAT-1 from rat brain (also called SLC6A1) renders both net flux and exchange of GABA largely chloride independent. In contrast to wild-type GAT-1, a marked stimulation of the rate of net flux, but not of exchange, was observed when the internal pH was lowered. Equivalent mutations introduced in the mouse GABA transporter GAT4 (SLC6A11) and the human dopamine transporter DAT (SLC6A3) also result in chloride-independent transport, whereas the reciprocal mutations in LeuT and Tyt1 render substrate binding and/or uptake by these bacterial NSS chloride dependent. Our data indicate that the negative charge, provided either by chloride or by the transporter itself, is required during binding and translocation of the neurotransmitter, probably to counterbalance the charge of the co-transported sodium ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06133 | DOI Listing |
Front Mol Biosci
June 2020
Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
Crystal structures and experiments relying on the tools of molecular pharmacology reported conflicting results on ligand binding sites in neurotransmitter/sodium symporters (NSS). We explored the number and functionality of ligand binding sites of NSS in a physiological setting by designing novel tools for atomic force microscopy (AFM). These allow for directly measuring the interaction forces between the serotonin transporter (SERT) and the antidepressant S-citalopram (S-CIT) on the single molecule level: the AFM cantilever tips were functionalized with S-CIT via a flexible polyethylene glycol (PEG) linker.
View Article and Find Full Text PDFFront Pharmacol
March 2020
Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
The human norepinephrine transporter (hNET) is a member of the neurotransmitter/sodium symporter family, which also includes the neuronal monoamine transporters for serotonin (SERT) and dopamine (DAT). Its involvement in chronic pain and many neurological disorders underlies its pharmaceutical importance. Using the X-ray crystal structures of the human serotonin transporter (hSERT) (PDB 5I6X) and dopamine transporter (dDAT) (PDB 4M48 and PDB 4XPA) as templates, we developed molecular models for norepinephrine (NE) bound to its high affinity binding site (S1) in the hNET.
View Article and Find Full Text PDFMethods Mol Biol
March 2019
Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
The number of ligand binding sites in neurotransmitter-sodium symporters has been determined by crystal structure analysis and molecular pharmacology with controversial results. Here, we designed molecular tools to measure the interaction forces between the serotonin transporter (SERT) and S-citalopram on the single-molecule level by means of atomic force microscopy. Force spectroscopy allows for the extraction of dynamic information under physiological conditions which is inaccessible via X-ray crystallography.
View Article and Find Full Text PDFBiophys J
January 2018
Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York.
Allostery plays a crucial role in the mechanism of neurotransmitter-sodium symporters, such as the human dopamine transporter. To investigate the molecular mechanism that couples the transport-associated inward release of the Na ion from the Na2 site to intracellular gating, we applied a combination of the thermodynamic coupling function (TCF) formalism and Markov state model analysis to a 50-μs data set of molecular dynamics trajectories of the human dopamine transporter, in which multiple spontaneous Na release events were observed. Our TCF approach reveals a complex landscape of thermodynamic coupling between Na release and inward-opening, and identifies diverse, yet well-defined roles for different Na-coordinating residues.
View Article and Find Full Text PDFProg Neurobiol
June 2017
Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary.
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K released due to presynaptic action potential generation, and iii) water keeping osmotic pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!