Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC(50)) of Mtx-1 and Mtx-2 of 0.246 and 4.13 microg/ml, respectively. The LC(50)s were 0.406 to 0.430 microg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074985 | PMC |
http://dx.doi.org/10.1128/AEM.00654-07 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania.
The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.
View Article and Find Full Text PDFInt J Pharm
January 2025
Université de Franche-Comté, EFS, INSERM, UMR RIGHT, LabEx LipSTIC (ANR-11- LABX-0021), F-25000 Besançon, France. Electronic address:
Inflammatory Bowel Diseases (IDB) are chronic disorders characterized by gut inflammation, mucosal damage, increased epithelial permeability and altered mucus layer. No accurate in vitro model exists to simulate these characteristics. In this context, drug development for IBD or intestinal inflammation requires in vivo evaluations to verify treatments efficacy.
View Article and Find Full Text PDFJ Control Release
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal. Electronic address:
Int Immunopharmacol
December 2024
Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China. Electronic address:
Background: Lipopolysaccharide (LPS) triggers the activation of nuclear factor kappa B (NF-κB) by interacting with Toll-like receptor 4 (TLR4), leading to the production of various proinflammatory enzymes and cytokines that are crucial in the development of acute lung injury (ALI). Mitoxantrone (MTX) has been demonstrated to mitigate the inflammatory response caused by LPS; however, its precise function in the context of ALI is not fully comprehended.
Purpose: This study aimed to investigate the inhibitory effects and underlying mechanisms of MTX against LPS-induced ALI.
Int J Mol Sci
September 2024
Laboratory of Venoms and Therapeutic Biomolecules, Pasteur Institute of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia.
Maurotoxin (MTX) is a 34-residue peptide from venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K) channels. Structure-activity relationship studies have not been well performed for this toxin family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!