All-atom molecular dynamics simulations are used to better understand the dynamic environment experienced by the Kv1.2 channel in a lipid membrane. The structure of the channel is stable during the trajectories. The pore domain keeps a well-defined conformation, whereas the voltage-sensing domains undergo important lateral fluctuations, consistent with their modular nature. A channel-like region at the center of the S1-S4 helical bundle fills rapidly with water, reminiscent of the concept of high-dielectric aqueous crevices. The first two arginines along S4 (R294 and R297) adopt an interfacial position where they interact favorably with water and the lipid headgroups. The following two arginines (R300 and R303) interact predominantly with water and E226 in S2. Despite the absence of a structurally permanent gating pore formed by protein residues and surrounding the S4 helix, as traditionally pictured, the charged residues are located in a favorable environment and are not extensively exposed to the membrane nonpolar region. Continuum electrostatic computations indicate that the transmembrane potential sensed by the charged residues in the voltage sensor varies abruptly over the outer half of the membrane in the arginine-rich region of S4; thus, the voltage gradient or membrane electric field is "focused". Interactions of basic residues with the lipid headgroups at the intracellular membrane-solution interface reduce the membrane thickness near the channel, resulting in an increased transmembrane field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2025645 | PMC |
http://dx.doi.org/10.1529/biophysj.107.112540 | DOI Listing |
Phys Chem Chem Phys
January 2025
School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.
View Article and Find Full Text PDFUnlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.
View Article and Find Full Text PDFSoft Matter
January 2025
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
are famous for their ability to survive in extremely harsh environments, probably due to the unprecedented stability of their lipid membranes. Key features of archaeal lipids (bolalipids) that confer their stability are methyl side groups and cyclopentanes in the alkyl chains, as well as the specific shape of the molecule, which has two headgroups connected by two tails. However, the contribution of each structural parameter to membrane stability and the underlying physical mechanism remain unknown.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Medicinal Chemistry, Uppsala University, P.O. Box 547, 751 23, Uppsala, Sweden. Electronic address:
We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.
View Article and Find Full Text PDFMol Pharm
January 2025
Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
Oral peptide therapeutics are increasingly favored in the pharmaceutical industry for their ease of use and better patient adherence. However, they face challenges with poor oral bioavailability due to their high molecular weight and surface polarity. Permeation enhancers (PEs) like salcaprozate sodium (SNAC) have shown promise in clinical trials, achieving about 1% bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!