A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. | LitMetric

The aqueous lining of the lung surface exposed to the air is covered by lung surfactant, a film consisting of lipid and protein components. The main function of lung surfactant is to reduce the surface tension of the air-water interface to the low values necessary for breathing. This function requires the exchange of material between the lipid monolayer at the interface and lipid reservoirs under dynamic compression and expansion of the interface during the breathing cycle. We simulated the reversible exchange of material between the monolayer and lipid reservoirs under compression and expansion of the interface. We used a mixture of dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol, cholesterol, and surfactant-associated protein C as a functional analog of mammalian lung surfactant. In our simulations, the monolayer collapses into the water subphase on compression and forms bilayer folds. On monolayer reexpansion, the material is transferred from the folds back to the interface. The simulations indicate that the connectivity of the bilayer aggregates to the monolayer is necessary for the reversibility of the monolayer-bilayer transformation. The simulations also show that bilayer aggregates are unstable in the air subphase and stable in the water subphase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2084228PMC
http://dx.doi.org/10.1529/biophysj.107.113399DOI Listing

Publication Analysis

Top Keywords

lung surfactant
16
exchange material
8
lipid reservoirs
8
compression expansion
8
expansion interface
8
water subphase
8
bilayer aggregates
8
lung
5
interface
5
monolayer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!