Activation of the human FPRL-1 receptor promotes Ca2+ mobilization in U87 astrocytoma cells.

Neurochem Res

Department of Biochemistry, The Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Published: January 2008

The human formyl peptide receptor like 1 (FPRL-1) is a variant of the Gi-coupled formyl-peptide receptor. Functional FPRL-1 is endogenously expressed in the U87 astrocytoma cell line and there is accumulating evidence to suggest that FPRL-1 may be involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease. In this study, we examined the ability of FPRL-1 to mobilize intracellular Ca2+ in U87 astrocytoma cells, as well as in Chinese hamster ovary (CHO) cells stably expressing FPRL-1. We showed that Trp-Lys-Tyr-Met-Val-Met-NH2 (WKYMVM), a specific agonist for FPRL-1, stimulated Ca2+ influx in both U87 and FPRL-1/CHO cells. These effects can be inhibited by the FPRL-1 selective antagonist, WRW4. Involvement of Gi proteins was demonstrated with the use of pertussis toxin, while inhibitors of store-operated channels (SOC) including 1-[2-(4-methoxyphenyl)]-2-[3-(4-methpxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride (SKF96365) and 2-aminoethoxydiphenyl borate (2-APB) were found to abolish the WKYMVM-induced Ca2+ increase. However, intracellular Ca2+ mobilization in both cell lines were unaffected by the phospholipase Cbeta inhibitor U73122 or selective ryanodine receptor inhibitors. Our data demonstrated that activation of Gi-coupled FPRL-1 can lead to Ca2+ influx possibly via SOCs in U87 and FPRL-1/CHO cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-007-9425-7DOI Listing

Publication Analysis

Top Keywords

u87 astrocytoma
12
fprl-1
9
ca2+ mobilization
8
astrocytoma cells
8
intracellular ca2+
8
ca2+ influx
8
u87 fprl-1/cho
8
fprl-1/cho cells
8
ca2+
6
u87
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!