Deleterious mutations can surf to high densities on the wave front of an expanding population.

Mol Biol Evol

Zoology Building, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ Scotland, UK.

Published: October 2007

There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, we extend this work and examine the surfing behavior of nonneutral mutations. Using an individual-based coupled-map lattice model, we confirm that, regardless of its fitness effects, the probability of survival of a new mutation depends strongly upon where it arises in relation to the expanding wave front. We demonstrate that the surfing effect can lead to deleterious mutations reaching high densities at an expanding front, even when they have substantial negative effects on fitness. Additionally, we highlight that this surfing phenomenon can occur for mutations that impact reproductive rate (i.e., number of offspring produced) as well as mutations that modify juvenile competitive ability. We suggest that these effects are likely to have important consequences for rates of spread and the evolution of spatially expanding populations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msm167DOI Listing

Publication Analysis

Top Keywords

deleterious mutations
8
high densities
8
wave front
8
range expansion
8
expanding front
8
expanding
5
mutations
5
mutations surf
4
surf high
4
densities wave
4

Similar Publications

Colorectal cancer (CRC) is a major health problem the world face currently and one of the leading causes of death worldwide. CRC is genetically heterogeneous and multiple genetic aberrations may appear on course of the disease throughout patient's lifetime. Genetic biomarkers such as BRAF, KRAS, and NRAS may provide early precision treatment options that are crucial for patient survival and well-being.

View Article and Find Full Text PDF

Precise modelling of mitochondrial diseases using optimized mitoBEs.

Nature

January 2025

Changping Laboratory, Beijing, The People's Republic of China.

The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.

View Article and Find Full Text PDF

Immunomodulatory drug (IMiD) resistance is a key clinical challenge in myeloma treatment. Previous data suggests almost one third of myeloma patients acquire mutations in the key IMiD effector cereblon by the time they are pomalidomide refractory. Some events, including stop codons/frameshift mutations and copy loss, having clearly explicable effects on cereblon function.

View Article and Find Full Text PDF

Objectives: Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery.

View Article and Find Full Text PDF

Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their demographic histories and distributions of fitness effects (DFE) of mutations. Here, we infer the demographic histories and DFEs for amino-acid changing mutations of 39 of the most prevalent and abundant commensal gut microbial species found in Westernized individuals over timescales exceeding human generations. Some species display contractions in population size and others expansions, with several of these events coinciding with several key historical moments in human history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!