A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1037
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3155
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. | LitMetric

Cortical excitability can be reliably assessed by means of paired-pulse stimulation techniques. Recent studies demonstrated particularly for motor and visual cortex that cortical excitability is systematically altered following the induction of learning processes or during the development of pathological symptoms. A recent tactile coactivation protocol developed by Godde and coworkers showed that improvement of tactile performance in humans can be achieved also without training through passive stimulation on a time scale of a few hours. Tactile coactivation evokes plastic changes in somatosensory cortical areas as measured by blood oxygenation level-dependent (BOLD) activation in fMRI or SEP-dipole localization, which correlated with the individual gain in performance. To demonstrate changes in excitability of somatosensory cortex after tactile coactivation, we combined assessment of tactile performance with recordings of paired-pulse SEPs after electrical median nerve stimulation of both the right coactivated and left control hand at ISIs of 30 and 100 ms before, 3 h after and 24 h after tactile coactivation. Amplitudes and latencies of the first and second cortical N20/P25 response components were calculated. For the coactivated hand, we found significantly lowered discrimination thresholds and significantly reduced paired-pulse ratios (second N20/P25 response/first N20/P25 response) at an ISI of 30 ms after tactile coactivation indicating enhanced cortical excitability. No changes in paired-pulse behaviour were observed for ISIs of 100 ms. Both psychophysical and cortical effects recovered to baseline 24 h after tactile coactivation. The individual increase of excitability correlated with the individual gain in discrimination performance. For the left control hand we found no effects of tactile coactivation on paired-pulse behaviour and discrimination threshold. Our results indicate that changes in cortical excitability are modified by tactile coactivation and were scaled with the degree of improvement of the individual perceptual learning. Conceivably, changes of cortical excitability seem to constitute an additional important marker and mechanism underlying plastic reorganization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277142PMC
http://dx.doi.org/10.1113/jphysiol.2007.140079DOI Listing

Publication Analysis

Top Keywords

tactile coactivation
36
cortical excitability
20
tactile
11
coactivation
9
somatosensory cortex
8
excitability
8
median nerve
8
nerve stimulation
8
cortical
8
tactile performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!