Measurement of glycogen synthase activity in crude extracts by CE.

Electrophoresis

Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla, Santiago, Chile.

Published: August 2007

Glycogen synthase catalyzes the incorporation of UDP-glucose into glycogen. The activity of the enzyme is usually measured either by a spectrophotometric method or by a radioassay. The first one is not suitable because of the difficulties regarding the use of coupled enzymes in crude extracts, while the second is a time-consuming method involving glycogen isolation and manipulation of radioactivity. We have used a CZE technique as a novel approach to measure glycogen synthase activity. The separations were performed at 22 kV (36 microA) in uncoated capillaries (53 cmx50 microm). Sample injection time was 30 s and nucleotides were monitored at 254 nm. Best resolution was achieved in 20 mM tetraborate buffer, pH 9.2. Curves of absorbance as a function of UDP and UDP-glucose concentration were linear. Enzyme activity in oocyte extracts was linear with respect to time (up to15 min) and enzyme concentration. The K(m app.) for UDP-glucose was 0.87 mM, a value identical to the one reported using the radioassay. CZE enables easy quantitation of compounds, high sensitivity, and automation of the process. Small sample sizes are required, interferences by auxiliary enzymes and manipulation of radioactivity are avoided, and analysis time is significantly diminished.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200700040DOI Listing

Publication Analysis

Top Keywords

glycogen synthase
12
synthase activity
8
crude extracts
8
manipulation radioactivity
8
measurement glycogen
4
activity
4
activity crude
4
glycogen
4
extracts glycogen
4
synthase catalyzes
4

Similar Publications

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!