A room-temperature ionic liquid N-butylpyridinium hexafluorophosphate was used as a binder to construct an ionic liquid modified carbon paste electrode, which was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The ionic liquid carbon paste electrode (IL-CPE) showed enhanced electrochemical response and strong analytical activity towards the electrochemical oxidation of dopamine (DA). A pair of well-defined quasireversible redox peaks of DA appeared, with the redox peaks located at 215 mV (E (pa)) and 151 mV (E (pc)) (vs. the saturated calomel electrode, SCE) in pH 6.0 phosphate buffer solution. The formal potential (E (0')) was calculated as 183 mV (vs. SCE) and the peak-to-peak separation as 64 mV. The electrochemical behavior of DA on the IL-CPE was carefully investigated. Under the optimal conditions, the anodic peak currents increased linearly with the concentration of DA in the range 1.0 x 10(-6)-8.0 x 10(-4) mol/L and the detection limit was calculated as 7.0 x 10(-7) mol/L (3sigma). The interferences of foreign substances were investigated and the proposed method was successfully applied to the determination of DA injection samples. The IL-CPE fabricated was sensitive, selective and showed good ability to distinguish the coexisting ascorbic acid and uric acid.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-007-1518-2DOI Listing

Publication Analysis

Top Keywords

ionic liquid
16
carbon paste
12
paste electrode
12
oxidation dopamine
8
liquid modified
8
modified carbon
8
redox peaks
8
electrocatalytic oxidation
4
ionic
4
dopamine ionic
4

Similar Publications

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

Efficient enrichment of analytes and purification of matrices are crucial for the highly sensitive detection and monitoring of pesticides in traditional Chinese herbs. This work prepared magnetic ionic liquid-controlled covalent organic framework (IL-COF@FeO) as the sorbent via a simple in-situ precipitation polymerization and thiolene "click" strategy. The IL-COF@FeO exhibited remarkable adsorption performance towards pyrethroids within 5 min.

View Article and Find Full Text PDF

Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!