We recently reported that shortened thyroid hormone receptor isoforms (TRs) can target mitochondria and acutely modulate inositol 1,4,5 trisphosphate (IP3)-mediated Ca2+ signaling when activated by thyroid hormone 3,5,3'-tri-iodothyronine (T3). Stimulation occurs via an increase in mitochondrial metabolism that is independent of transcriptional activity. Here, we present evidence that T3-bound xTRbetaA1s inhibit apoptotic activity mediated by cytochrome c release. An assay for apoptotic potency was modified to measure the ability of Xenopus oocyte extracts to induce morphological changes in isolated liver nuclei. Apoptotic potency was significantly decreased when oocyte extract was prepared from xTRbetaA1 expressing oocytes and treated with T3. The ability of T3 treatment to inhibit apoptosis was dependent on the expression of xTRbetaA1s in the mitochondrial fraction, not in the cytosolic fraction. T3 treatment also increased the membrane potential of isolated mitochondria prepared from oocytes expressing xTRbetaA1s but not from wildtype controls. We conclude that T3 acutely regulates cytochrome c release in a potential dependent manner by activating TRs located within mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-007-0109-1DOI Listing

Publication Analysis

Top Keywords

apoptotic potency
12
thyroid hormone
12
located mitochondria
8
cytochrome release
8
inhibition apoptotic
4
potency ligand
4
ligand stimulated
4
stimulated thyroid
4
hormone receptors
4
receptors located
4

Similar Publications

CDK1 inhibitor RO-3306 enhances BTKi potency in diffuse large B-cell lymphoma by suppressing JAK2/STAT3 signaling.

Int J Biol Macromol

January 2025

Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China. Electronic address:

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, which characterized by a high degree of heterogeneity in terms of clinical presentation, molecular phenotype, and genetic features. However, approximately 30 %-40 % of patients are refractory to standard chemotherapy, and their prognosis is poor. The emergence of small-molecule inhibitors, such as Bruton's tyrosine kinase inhibitors (BTKi), has greatly improved the treatment of DLBCL; however, drug resistance associated with small-molecule inhibitors has greatly limited their clinical application.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.

The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.

View Article and Find Full Text PDF

This study reports the design, synthesis, and characterization of a novel series of benzene sulfonamide-triazole hybrid derivatives, to evaluate their anticancer potential against colorectal cancer. The synthesized compounds were characterized using NMR and HRMS spectroscopic techniques. In vitro cytotoxicity assessments revealed that compounds 5g and 5j exhibited significant anticancer effects.

View Article and Find Full Text PDF

This study explores the therapeutic potential of albumin-bound Zn(II)-thiosemicarbazone compounds (Alb-ZnTcA, Alb-ZnTcB) against breast cancer cells. Previous research indicates that these compounds hinder cancer cell proliferation by blocking DNA synthesis, promoting oxidative stress to induce apoptosis, and disrupting the cell cycle to inhibit cellular division. This study focuses on the loading and characterization of these potentially chemically unstable compounds on bovine serum albumin-based nanocarriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!