Thermal stability effects of removing the type-2 copper ligand His306 at the interface of nitrite reductase subunits.

Eur Biophys J

Dipartimento di Fisica e Unità CNISM, Università della Calabria, Ponte P. Bucci, Cubo 31C, 87036 Arcavacata di Rende, Cosenza, Italy.

Published: September 2007

Nitrite reductase (NiR) is a highly stable trimeric protein, which denatures via an intermediate, N(3)<--(k)-->U(3)--(k)-->F (N-native, U-unfolded and F-final). To understand the role of interfacial residues on protein stability, a type-2 copper site ligand, His306, has been mutated to an alanine. The characterization of the native state of the mutated protein highlights that this mutation prevents copper ions from binding to the type-2 site and eliminates catalytic activity. No significant alteration of the geometry of the type-1 site is observed. Study of the thermal denaturation of this His306Ala NiR variant by differential scanning calorimetry shows an endothermic irreversible profile, with maximum heat absorption at T (max) approximately equal to 85 degrees C, i.e., 15 degrees C lower than the corresponding value found for wild-type protein. The reduction of the protein thermal stability induced by the His306Ala replacement was also shown by optical spectroscopy. The denaturation pathway of the variant is compatible with the kinetic model N(3)--(k)-->F(3), where the protein irreversibly passes from the native to the final state. No evidence of subunits' dissociation has been found within the unfolding process. The results show that the type-2 copper sites, situated at the interface of two monomers, significantly contribute to both the stability and the denaturation mechanism of NiR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-007-0151-5DOI Listing

Publication Analysis

Top Keywords

type-2 copper
12
thermal stability
8
ligand his306
8
nitrite reductase
8
protein
6
stability effects
4
effects removing
4
type-2
4
removing type-2
4
copper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!