Differential metabolomics based on a non-targeted FT-ICR/MS analysis demonstrated metabolite accumulation patterns reflecting light/dark conditions in Arabidopsis T87 cell culture. First, FT-ICR/MS data sets were converted into metabolome information using the Dr.DMASS software (http://kanaya.naist.jp/DrDMASS/). A quick search of a metabolite-species database, KNApSAcK (http://kanaya.naist.jp/KNApSAcK/), was implemented to assign metabolite candidates to each accurate MS data (<1 ppm) through the prediction of molecular formulas, and the candidate structures were further studied using MS/MS analyses. Specific metabolites representing the culture conditions included sugars, phenylpropanoid derivatives, flavonol aglycons, and a plastid nonmevalonate pathway intermediate. Transcriptomics data were obtained in parallel and analyzed using a transcriptome analysis tool, KaPPA-View (http://kpv.kazusa.or.jp/kappa-view/). The specific accumulation patterns of flavonol aglycons were in good agreement with the light/dark regulation of a cytochrome P450 gene, CYP75B, and the build-up of 2-C-methyl-D-erythritol 4-phosphate, a nonmevalonate pathway intermediate, in the light grown cells was also consistent with a gene expression profile. The differential metablomics scheme based on the FT-ICR/MS metabolomics can serve as an evaluation system of metabolic activities contributing to successful identification and proper manipulation of key enzymatic steps in metabolic engineering studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-007-0594-zDOI Listing

Publication Analysis

Top Keywords

differential metabolomics
8
cell culture
8
metabolomics unraveling
4
unraveling light/dark
4
light/dark regulation
4
regulation metabolic
4
metabolic activities
4
activities arabidopsis
4
arabidopsis cell
4
culture differential
4

Similar Publications

Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.

View Article and Find Full Text PDF

Aim Of The Study: This study investigated the mechanism by which the Postoperative Tongqi Formula (PTQF) treats postoperative ileus (POI) through regulation of the p38 MAPK signaling pathway, Zona occludens 1 (ZO-1) protein, and metabolism.

Methods: The primary components of PTQF were characterized using UHPLC-Q-TOF-MS/MS. The identified compounds subsequently employed network pharmacology to predict the signaling pathways associated with the inflammatory phase of POI.

View Article and Find Full Text PDF

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Comparative metabolomic analysis of Haematococcus pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.

Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!