Glutathione (reduced form GSH and oxidized form GSSG) constitutes an important defense against oxidative stress in the brain, and taurine is an inhibitory neuromodulator particularly in the developing brain. The effects of GSH and GSSG and glycylglycine, gamma-glutamylcysteine, cysteinylglycine, glycine and cysteine on the release of [(3)H]taurine evoked by K+-depolarization or the ionotropic glutamate receptor agonists glutamate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) were now studied in slices from the hippocampi from 7-day-old mouse pups in a perfusion system. All stimulatory agents (50 mM K(+), 1 mM glutamate, 0.1 mM kainate, 0.1 mM AMPA and 0.1 mM NMDA) evoked taurine release in a receptor-mediated manner. Both GSH and GSSG significantly inhibited the release evoked by 50 mM K+. The release induced by AMPA and glutamate was also inhibited, while the kainate-evoked release was significantly activated by both GSH and GSSG. The NMDA-evoked release proved the most sensitive to modulation: L-Cysteine and glycine enhanced the release in a concentration-dependent manner, whereas GSH and GSSG were inhibitory at low (0.1 mM) but not at higher (1 or 10 mM) concentrations. The release evoked by 0.1 mM AMPA was inhibited by gamma-glutamylcysteine and cysteinylglycine, whereas glycylglycine had no effect. The 0.1 mM NMDA-evoked release was inhibited by glycylglycine and gamma-glutamylcysteine. In turn, cysteinylglycine inhibited the NMDA-evoked release at 0.1 mM, but was inactive at 1 mM. Glutathione exhibited both enhancing and attenuating effects on taurine release, depending on the glutathione concentration and on the agonist used. Both glutathione and taurine act as endogenous neuroprotective effectors during early postnatal life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814815 | PMC |
http://dx.doi.org/10.1007/s00726-007-0587-z | DOI Listing |
J Med Chem
January 2025
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Blocking mitosis is a promising strategy to induce tumor cell death. However, AMPK- and PFKFB3-mediated glycolysis can maintain ATP supply and help tumor cells overcome antimitotic drugs. Inhibiting glycolysis provides an opportunity to decrease the resistance of tumor cells to antimitotic drugs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran.
Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:
Compared to conventional nanocarrier-based drug delivery technology, small-molecule-assembled nanomaterials provide various advantages, including higher drug loading efficiency, lower excipient-related toxicity, and a simpler formulation process. Our research constructed a mannonse-modified small-molecule-assembled nanodrug for synergistic photodynamic/chemotherapy against A549 cancer cells. The hydrophobic hypoxic-activated agent tirapazamine (TPZ) and a hydrophilic fluorescence probe Cyanine 3 (Cy3) constitute this amphiphilic prodrug via a glutathione (GSH)-responsive linkage, which could self-assemble into stable nanoparticles (NPs) and encapsulate a newly synthesized photosensitizer (SeBDP).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Gaudichaudione H (GH) is a naturally occurring small molecular compound derived from Garcinia oligantha Merr. (Clusiaceae), but the full pharmacological functions remain unclear. Herein, the potential of GH in disulfidptosis regulation, a novel form of programmed cell death induced by disulfide stress is explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!