The penta-EF hand protein sorcin participates in the modulation of Ca2+-induced calcium-release in the heart through the interaction with several Ca2+ channels such as the ryanodine receptor. The modulating activity is impaired in the recently described natural F112L mutant. The F112 residue is located at the end of the D helix next to Asp113, one of the calcium ligands in the EF3 hand endowed with the highest affinity for the metal. The F112L-sorcin X-ray crystal structure at 2.5 A resolution displays marked alterations in the EF3 hand, where the hydrogen bonding network established by Phe112 is disrupted, and in the EF1 region, which is tilted in both monomers that give rise to the dimer, the stable form of the molecule. In turn, the observed tilt is indicative of an increased flexibility of the N-terminal part of the molecule. The structural alterations result in a 6-fold decrease in calcium affinity with respect to the wild-type protein and to an even larger impairment of the interaction with annexin VII and of the ability of sorcin to interact with and inhibit ryanodine receptors. These results provide a plausible structural and functional framework that helps elucidate the phenotypic alterations of mice overexpressing F112L-sorcin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.07-8988com | DOI Listing |
Sci Rep
August 2017
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
Plants synthesize numerous specialized metabolites (also termed natural products) to mediate dynamic interactions with their surroundings. The complexity of plant specialized metabolism is the result of an inherent biosynthetic plasticity rooted in the substrate and product promiscuity of the enzymes involved. The pathway of carnosic acid-related diterpenes in rosemary and sage involves promiscuous cytochrome P450s whose combined activity results in a multitude of structurally related compounds.
View Article and Find Full Text PDFFASEB J
January 2008
CNR Institute of Molecular Biology and Pathology, University Sapienza, P.le A.Moro 5, 00185 Rome, Italy.
The penta-EF hand protein sorcin participates in the modulation of Ca2+-induced calcium-release in the heart through the interaction with several Ca2+ channels such as the ryanodine receptor. The modulating activity is impaired in the recently described natural F112L mutant. The F112 residue is located at the end of the D helix next to Asp113, one of the calcium ligands in the EF3 hand endowed with the highest affinity for the metal.
View Article and Find Full Text PDFFASEB J
February 2007
Division of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA.
Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!