The GLHs (germline RNA helicases) are constitutive components of the germline-specific P granules in the nematode Caenorhabditis elegans and are essential for fertility, yet how GLH proteins are regulated remains unknown. KGB-1 and CSN-5 are both GLH binding partners, previously identified by two-hybrid interactions. KGB-1 is a MAP kinase in the Jun N-terminal kinase (JNK) subfamily, whereas CSN-5 is a subunit of the COP9 signalosome. Intriguingly, although loss of either KGB-1 or CSN-5 results in sterility, their phenotypes are strikingly different. Whereas csn-5 RNA interference (RNAi) results in under-proliferated germlines, similar to glh-1/glh-4(RNAi), the kgb-1(um3) loss-of-function mutant exhibits germline over-proliferation. When kgb-1(um3) mutants are compared with wild-type C. elegans, GLH-1 protein levels are as much as 6-fold elevated and the organization of GLH-1 in P granules is grossly disrupted. A series of additional in vivo and in vitro tests indicates that KGB-1 and CSN-5 regulate GLH-1 levels, with GLH-1 targeted for proteosomal degradation by KGB-1 and stabilized by CSN-5. We propose the ;good cop: bad cop' team of CSN-5 and KGB-1 imposes a balance on GLH-1 levels, resulting in germline homeostasis. In addition, both KGB-1 and CSN-5 bind Vasa, a Drosophila germ granule component; therefore, similar regulatory mechanisms might be conserved from worms to flies.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.005181DOI Listing

Publication Analysis

Top Keywords

kgb-1 csn-5
16
csn-5
9
kgb-1
8
glh-1 levels
8
glh-1
6
glh-1 elegans
4
elegans granule
4
granule protein
4
protein controlled
4
controlled jnk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!