Human cytomegalovirus (HCMV) induces serum- or density-arrested human lung (LU) cells to traverse the cell cycle, providing it with a strategy to replicate in post-mitotic cells that are its cellular substrate in vivo. HCMV infection also induces high cellular levels of p53, seemingly in contradiction to the observed cell cycle progression. This study was undertaken to examine the mechanism(s) of the increased p53 abundance. HCMV infection caused a 4-fold increase in p53 that preceded a substantial increase in p53 transcripts by more than 24 h. p53 was stabilized in HCMV-infected cells (from a half-life of less than 30 min to about 8 h) and was less sensitive to proteasome-mediated degradation. Ubiquitination of p53 in mock-infected LU cells was sensitive to inhibition by trans-4-iodo, 4'-boranyl-chalcone, consistent with HDM2-catalyzing ubiquitination of p53. In HCMV-infected cells, ubiquitination of p53 was essentially undetectable. Although HDM2 had a nuclear distribution in mock-infected LU cells, in HCMV-infected cells HDM2 was translocated to the cytoplasm beginning at 12 h and demonstrated decreased cellular abundance thereafter. HDM2 was stabilized in the HCMV-infected cells by MG132, indicating a shift from p53 to HDM2 ubiquitination. p53 demonstrated a predominantly nuclear distribution in HCMV-infected cells through 48 h, resulting in p53 and HDM2 in distinct subcellular compartments. The principal mechanism responsible for increased p53 stabilization was nuclear export and degradation of HDM2. Thus, HCMV uses a shift from p53 to HDM2 ubiquitination and destabilization to obtain protracted high levels of p53, while promoting cell cycle traverse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M705349200 | DOI Listing |
J Virol
January 2025
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Unlabelled: Human cytomegalovirus (HCMV) modulates numerous cellular pathways to facilitate infection, including key components in cellular iron homeostasis. Iron is essential to many cellular processes but, if present in excess, drives cell death through ferroptosis. Ferroptosis is a process that is dependent upon the accumulation of oxidatively damaged phospholipids (lipid peroxides); when these lipid peroxides accumulate in membranes, this culminates in plasma membrane rupture and eventual cell lysis.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Human cytomegalovirus (HCMV) is a herpes virus with a long replication cycle. HCMV encoded long non-coding RNA termed RNA2.7 is the dominant transcript with a length of about 2.
View Article and Find Full Text PDFMicrobiol Immunol
December 2024
Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.
Viruses
September 2024
Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany.
(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!