We demonstrated recently that superoxide anion levels are elevated in prevertebral sympathetic ganglia of deoxycorticosterone acetate-salt hypertensive rats and that this superoxide anion is generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase. In this study we compared the reduced nicotinamide-adenine dinucleotide phosphate oxidase enzyme system of dorsal root ganglion (DRG) and sympathetic celiac ganglion (CG) and its regulation in hypertension. The reduced nicotinamide-adenine dinucleotide phosphate oxidase activity of ganglion extracts was measured using fluorescence spectrometry of dihydroethidine; the activity in hypertensive dorsal root ganglion was 34% lower than in normotensive DRG. In contrast, activity was 79% higher in hypertensive CG than normotensive CG. mRNA for the oxidase subunits NOX1, NOX2, NOX4, p47(phox), and p22(phox) were present in both CG and DRG; mRNA for NOX4 was significantly higher in CG than in DRG. The levels of mRNA and protein expression of the membrane-bound catalytic subunit p22(phox) and of the regulatory subunits p47(phox) and Rac-1 were measured in CG and DRG in normotensive and hypertensive rats. p22(phox) mRNA and protein expression was greater in CG of hypertensive rats but not in DRG. Compared with normotensive controls, p47(phox) mRNA and protein, as well as Rac-1 protein, were significantly decreased in hypertensive DRG but not in CG. Immunohistochemical staining of p47(phox) showed translocation from cytoplasm to membrane in hypertensive CG but not in hypertensive DRG. This suggests that reduced nicotinamide-adenine dinucleotide phosphate oxidase activation in sympathetic neurons and sensory neurons is regulated in opposite directions in hypertension. This differential regulation may contribute to unbalanced vasomotor control and enhanced vasoconstriction in the splanchnic circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.089748 | DOI Listing |
Alzheimers Dement
December 2024
Nagoya City University, Nagoya, Japan.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Accumulation of amyloid-β (Aβ) in the brains causes chronic neuroinflammation, synaptic loss, and neurovascular damage, which is thought to initiate decades-long AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy highlights the utility of biomarkers that faithfully reflect Aβ-related brain pathology to diagnose AD at the preclinical stage, to predict the onset and progression of the disease, and to assess the therapeutic efficacy of drugs.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).
View Article and Find Full Text PDFRen Fail
December 2025
Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2i) are antihyperglycemic agents that provide additional renal-protective effects in patients with DKD, independent of their glucose-lowering effects. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFAnalyst
January 2025
Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China. Electronic address:
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!