Intramuscular injection of NGF in human subjects has been reported not to elicit pain, whereas 5% NaCl does. On the other hand, NGF injections induce a long-lasting hyperalgesia. In the present study, the possible neuronal basis of these effects was studied at the spinal level. In anesthetized rats, neurons in the segment L4 were recorded intracellularly before (n=65), during (n=15), and after injections of NGF (n=50) as well as during and after 5% NaCl (during: n=12, after: n=39) into the gastrocnemius-soleus (GS) muscle. The neuronal responses to electrical and mechanical stimuli were tested and possible changes caused by the stimulants recorded. Of those neurons that responded to the NGF injections (7 out of 15), the majority exhibited subthreshold excitatory postsynaptic potentials (EPSPs). Only 3 out of 15 neurons reacted with action potentials (APs) at a low frequency. Already 5 to 30 min after NGF injection, some of these neurons showed signs of a sensitization. In comparison to NGF, hypertonic saline i.m. elicited APs at a higher frequency in a larger number of neurons (9 out of 12). One day after NGF i.m., the proportion of dorsal horn neurons responding with APs to electrical stimulation of the GS nerves had increased significantly from 4.6% to 28.0%. Despite the stronger excitatory effect of 5% NaCl, the sensitization of the dorsal horn neurons after hypertonic saline was less than that after NGF (15.3%). Behavioral experiments showed that NGF injections induced stronger mechanical allodynia and hyperalgesia than hypertonic saline i.m. The data demonstrate that low-frequency activation or even subthreshold potentials in dorsal horn neurons evoked by unmyelinated muscle afferents are an effective means of sensitizing these neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2007.06.054DOI Listing

Publication Analysis

Top Keywords

dorsal horn
16
horn neurons
16
ngf injections
12
hypertonic saline
12
neurons
10
ngf
9
subthreshold potentials
8
low-frequency activation
8
sensitization rat
4
dorsal
4

Similar Publications

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Unlabelled: Calcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist.

View Article and Find Full Text PDF

Proteomic analysis of spinal dorsal horn in prior exercise protection against neuropathic pain.

Sci Rep

January 2025

Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Yanta District, Xi'an, 710061, China.

Neuropathic pain (NP) is a complex and prevalent chronic pain condition that affects millions of individuals worldwide. Previous studies have shown that prior exercise protects against NP caused by nerve injury. However, the underlying mechanisms of this protective effect remain to be uncovered.

View Article and Find Full Text PDF

Regional mechanical properties of spinal cord gray and white matter in transverse section.

J Mech Behav Biomed Mater

January 2025

Ecole de Technologie Supérieure, 1100 Rue Notre Dame O, Montréal, QC, H3C 1K3, Canada; Research Center, CIUSSS Nord de L'île de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada; ILab-Spine - Laboratoire International en Imagerie et Biomécanique Du Rachis, France.

Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!