AI Article Synopsis

  • - An unknown by-product was discovered in the synthesis of Simvastatin from Lovastatin, specifically during a step where butylamine was replaced with benzylamine in Merck Sharp and Dhome's process.
  • - The molecular structure of the by-product was determined using various analytical techniques, including NMR spectroscopy, HPLC/MS, MS/MS, and FT-IR.
  • - The isolated compound was identified as alpha,beta,gamma,delta unsaturated Simvastatin N-benzylamide, with the molecular formula C(32)H(43)NO(3) and notable features in its heptanoic acid amide residue.

Article Abstract

Unknown by-product in Simvastatin synthesis from Lovastatin was found. The elucidation of this molecular structure by means of (1)H and (13)C NMR spectroscopy, HPLC/MS, MS/MS and FT-IR was shown. The mentioned by-product, originated during Merck Sharp and Dhome synthesis scheme was isolated in the second-last step replacing butylamine with benzylamine. The spectroscopic results agreed with a molecular formula C(32)H(43)NO(3). The proposed structure of this compound, characterised by the presence of a conjugated dienic system in the heptanoic acid amide residue, was alpha,beta,gamma,delta unsaturated Simvastatin N-benzylamide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2007.07.004DOI Listing

Publication Analysis

Top Keywords

structural elucidation
4
elucidation unknown
4
unknown simvastatin
4
simvastatin by-product
4
by-product industrial
4
industrial synthesis
4
synthesis starting
4
starting lovastatin
4
lovastatin unknown
4
unknown by-product
4

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

A review of pharmacological mechanisms, challenges and prospects of macromolecular glycopeptides.

Int J Biol Macromol

January 2025

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:

Macromolecular glycopeptides are natural products derived from various sources, distinguished by their structural diversity, multifaceted biological activities, and low toxicity. These compounds exhibit a wide range of biological functions, such as immunomodulation, antitumor effects, anti-inflammatory properties, antioxidant activity, and more. However, limited understanding of natural glycopeptides has hindered their development and practical application.

View Article and Find Full Text PDF

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

Local cortical structure pattern and genetic links in schizophrenia: An MRI and CRISPR/Cas9 study.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:

While the etiology of schizophrenia (SZ) remains elusive, its diverse phenotypes suggest the involvement of distinct functional cortical areas, and the heritability of SZ implies the underlying genetic factors. This study aimed to integrate imaging and molecular analyses to elucidate the genetic underpinnings of SZ. We investigated the local cortical structural pattern changes in Brodmann areas (BAs) by calculating the cortical structural pattern index (SPI) using magnetic resonance imaging analysis from 194 individuals with SZ and 330 controls.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!