Real-time characterization of the chemical and physical properties of individual aerosol particles is an important issue in environmental studies. A well-established way of accomplishing this task relies on the use of laser-induced fluorescence or laser ionization mass spectrometry. We describe here a simple approach aimed at experimentally verifying that single particles are indeed addressed. The approach has been tested with a system consisting of a series of aerodynamic lenses to form a beam of dye-doped particles aerosolized from a solution of known concentration with a medical nebulizer. Two independent spectral detection channels simultaneously measure the fluorescence signals generated in two different spectral regions by the passage of a mixture of two dye-doped particles through a focused laser beam in a vacuum chamber. Coincidence effects, arising from the simultaneous observation of both fluorescence emissions, can then be directly observed. Both dual-color fluorescence and pulse height distribution have been analyzed. As expected, the probability of single- or multiple-particle interaction strongly depends on the particle flux in the chamber, which is related to the concentration of particles in the nebulized solution. In our case, to achieve a two-particle coincidence smaller than 10%, a particle concentration lower than 1.2x10(5) particles/mL is required. Moreover, it was found that the experimental observations are in agreement with a simple mathematical model based on Poisson statistics. Although the results obtained refer to particle concentrations in solution, our approach can equally be applicable to experiments involving direct air sampling, provided that the number density of particles in air can be measured a priori, e.g., with a particle counter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370207781393424 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!