Adult male albino rats were orally administered 0, 25, 50 and 100 ppm of lead nitrate, mercuric chloride and cadmium chloride for 60, 120 and 180 days. The plasma sodium levels were decreased in rats exposed to varying doses of lead and mercury up to 180 days, while animals which consumed cadmium chloride showed an increase in sodium levels. In lead and mercury treated animals, plasma potassium levels were increased up to 180 days. The levels were decreased in cadmium exposed rats. These observations suggest that chronic exposure to these heavy metals considerably influences plasma sodium and potassium levels depending on the dose and duration of exposure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasma sodium
12
potassium levels
12
lead mercury
12
180 days
12
sodium potassium
8
male albino
8
albino rats
8
cadmium chloride
8
sodium levels
8
levels decreased
8

Similar Publications

Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation.

Nature

January 2025

Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Aortic valve calcification results from degenerative processes associated with several pathologies. These processes are influenced by age, chronic inflammation, and high concentrations of phosphate ions in the plasma, which contribute to induce mineralization in the aortic valve and deterioration of cardiovascular health. Environmental factors, such as wood smoke that emits harmful and carcinogenic pollutants, carbon monoxide (CO), and nitrogen oxide (NO), as well as other reactive compounds may also be implicated.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!