Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxidative folding of disulfide-rich conotoxins is essential for their biological functions. In vivo, disulfide bond formation is mainly catalyzed by protein disulfide isomerase. To elucidate the physiologic roles of protein disulfide isomerase in the folding of conotoxins, we have cloned a novel full-length protein disulfide isomerase from Conus marmoreus. Its ORF encodes a 500 amino acid protein that shares sequence homology with protein disulfide isomerases from other species, and 70% homology with human protein disulfide isomerase. Enzymatic analyses of recombinant C. marmoreus protein disulfide isomerase showed that it shared functional similarities with human protein disulfide isomerase. Using conotoxins tx3a and sTx3.1 as substrate, we analyzed the oxidase and isomerase activities of the C. marmoreus protein disulfide isomerase and found that it was much more efficient than glutathione in catalyzing oxidative folding and disulfide isomerization of conotoxins. We further demonstrated that macromolecular crowding had little effect on the protein disulfide isomerase-catalyzed oxidative folding and disulfide isomerization of conotoxins. On the basis of these data, we propose that the C. marmoreus protein disulfide isomerase plays a key role during in vivo folding of conotoxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2007.06003.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!