Objective: To determine tolerance of goldfish and zebrafish to benzalkonium chloride, formalin, malachite green, and potassium permanganate.

Design: Tolerance study.

Animals: Adult goldfish (Carassius auratus) and zebrafish (Danio rerio).

Procedures: Groups of fish (n = 10/group) were exposed to each disinfectant at the therapeutic dosage; at 0.25, 0.5, 3, and 5 times the concentration used for the therapeutic dosage; and at the concentration used for the therapeutic dosage but for 3 or 5 times the recommended exposure time.

Results: In both species, exposure to malachite green at the therapeutic dosage resulted in toxic effects, including death. Exposure to formalin at the therapeutic dosage resulted in toxic effects in goldfish, but not zebrafish, and exposure to potassium permanganate resulted in toxic effects in zebrafish, but not goldfish. On the basis of the ratio of therapeutic dosage to median lethal dosage, in goldfish, formalin was more toxic than benzalkonium chloride, which was more toxic than malachite green, which was more toxic than potassium permanganate. In zebrafish, potassium permanganate was more toxic than formalin and benzalkonium chloride, which were approximately equally toxic and more toxic than malachite green. Extending treatment time increased the toxicity of potassium permanganate in zebrafish and the toxicity of formalin and malachite green in goldfish, but did not alter the toxicity of the other disinfectants.

Conclusions And Clinical Relevance: Results indicated that there was no consistency between zebrafish and goldfish in their tolerance to disinfectants, and that therapeutic dosages reported in the literature for these disinfectants were not always safe.

Download full-text PDF

Source
http://dx.doi.org/10.2460/javma.231.4.590DOI Listing

Publication Analysis

Top Keywords

malachite green
24
therapeutic dosage
24
potassium permanganate
20
benzalkonium chloride
16
formalin malachite
12
goldfish zebrafish
12
toxic effects
12
toxic
9
chloride formalin
8
green potassium
8

Similar Publications

Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification.

Folia Microbiol (Praha)

January 2025

Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.

This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.

View Article and Find Full Text PDF

Evaluation of chitosan/diosgenin-infused manganese dioxide nanocomposite for highly effective photocatalytic and antibacterial activity.

Int J Biol Macromol

December 2024

Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.

Article Synopsis
  • The MnO/Dio@CS nanocomposite was studied for its ability to break down organic dyes Acid Green and Malachite Green Oxalate under visible light, achieving over 85% degradation in just 60 minutes.
  • The nanocomposite exhibited superior photocatalytic performance compared to pure MnO nanoparticles and was characterized using advanced techniques like FESEM and UV-vis spectroscopy.
  • Additionally, it demonstrated significant antibacterial properties against Bacillus subtilis and Pseudomonas aeruginosa, indicating its potential as a dual-functional material for environmental applications.
View Article and Find Full Text PDF

The aquatic ecosystem is negatively impacted by organic dye contamination, which is now one of the factors leading to environmental pollution. The present investigation involved the synthesis of nanocellulose (NC) and nanocellulose modified with NiO (NC/NiO) composite using acid hydrolysis and a one-step precipitation technique for NC and NiO, respectively. Malachite green (MG) dye was catalytically removed from an aqueous solution using the two products, which were mechanically homogenized.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!