Brevibacterium sp. JCM 6894 cells grown in the presence of 1.5-2.5 M NaCl for 24 h at 30 degrees C were subjected to the osmotic downshock. Downshocked cells after ectoine release were grown for further 24 h in the fresh medium with same salinity as before shock. When this cyclic system was applied to the strain JCM 6894, the amount of ectoine in the cells increased with an increase of incubation time, which indicates that the cells manipulated by the present conditions were enough active to survive and synthesize ectoine after several times of osmotic downshock. In the presence of 2 M NaCl, the highest yield of ectoine released was achieved in this cyclic system, more than 2.4 g/L during 7 days of incubation. (1)H and (13)C-NMR analyses of solutes released from the cells by the osmotic downshock showed the presence of only ectoine with high purity. Release of ectoine from the cells was carried out within 5 min and its rates were increased by the dilution in the downshock treatment. For the convenience of operations, non-sterilized medium containing 2 M NaCl was examined for the cell growth in the present system, in which almost same level of ectoine yield, release rates, and cell viability were observed as those of sterilized medium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.21619DOI Listing

Publication Analysis

Top Keywords

osmotic downshock
16
cyclic system
12
jcm 6894
12
ectoine
8
yield ectoine
8
brevibacterium jcm
8
subjected osmotic
8
ectoine cells
8
downshock presence
8
cells
6

Similar Publications

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Article Synopsis
  • Current understanding posits that lipid asymmetry in cell membranes is actively kept and not essential for survival, yet the inner membrane (IM) shows notable asymmetry.
  • Researchers created a specific mutant lacking phosphatidylethanolamine (PE) that relies on cardiolipin (CL) for its IM viability, uncovering how the distribution of CL is regulated in the membrane.
  • The study reveals that the enzyme ClsA adapts its structure in response to varying levels of PE, highlighting a potentially novel mechanism for sustaining lipid asymmetry in membranes without the need for specialized flippase proteins.
View Article and Find Full Text PDF

Background: Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems.

View Article and Find Full Text PDF

Free-living microorganisms are subjected to drastic changes in osmolarity. To avoid lysis under sudden osmotic down-shock, bacteria quickly expel small metabolites through the tension-activated channels MscL, MscS, and MscK. We examined five chromosomal knockout strains, ∆mscL, ∆mscS, a double knockout ∆mscS ∆mscK, and a triple knockout ∆mscL ∆mscS ∆mscK, in comparison to the wild-type parental strain.

View Article and Find Full Text PDF

Unlabelled: Free-living microorganisms are subjected to drastic changes in osmolarity. To avoid lysis under sudden osmotic down-shock, bacteria quickly expel small metabolites through the tension-activated channels MscL, MscS, and MscK. We examined five chromosomal knockout strains, Δ , Δ , a double knockout Δ Δ , and a triple knockout Δ Δ Δ in comparison to the wild-type parental strain.

View Article and Find Full Text PDF

Symbiosis between the components of a soft composite material responding to osmotic shock: The case of three-liquid systems.

J Colloid Interface Sci

February 2022

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China. Electronic address:

Hypothesis: For conventional high internal phase emulsions (HIPEs) with an external osmotic pressure greater than Laplace pressure, once the osmotic balance is broken, the swelling or shrinking of the aqueous phase can easily trigger phase separation. Mixing two immiscible dispersed phases in a double HIPE can evolve differently following an osmotic shock, which is expected to create a synergistic effect that can frustrate the phase separation of the system.

Experiments: Osmotic responses of double HIPEs were studied at the surface of a NaCl solution at a range of molarities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!