The role of calcium in paracetamol (acetaminophen) cytotoxicity in PC12 cells transfected with CYP4502E1.

Inflammopharmacology

Medical Academy of Bialystok, Ludwik Zamenhof Children's Hospital, Clinical Pharmacology Unit, J. Waszyngtona 17, 15-274, Bialystok, Poland.

Published: January 2010

Paracetamol-induced toxicity is mainly due to the accumulation of its CYP450-mediated N-hydroxylation product - N-acetylimidoquinone. We examined cell viability, proliferation rates and intracellular calcium in PC12 cells and in a PC12 cell line transfected with cytochrome P4502E1 exposed to paracetamol. This drug had a concentration-related effect on cell survival and a LD(50) which was significantly different between both cell types. A 48% decrease of PC12 cells was found following application of 5 mmol/L paracetamol for 48 h. A total 73% decrease in cell numbers was found in cells metabolizing the drug. Culture protein levels were diminished in a similar manner. Paracetamol increased intracellular calcium (by 662%) only in CYP4502E1-transfected cells. The protective role of EGTA and verapamil modulating calcium homeostasis was more evident in CYP4502E1-transfected cells. These results suggest that biotransformation of paracetamol by CYP2E1 increases its cytotoxicity and that a calcium imbalance may have a key role in the initiation of cell injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-998-0030-4DOI Listing

Publication Analysis

Top Keywords

pc12 cells
12
intracellular calcium
8
cyp4502e1-transfected cells
8
cells
6
cell
6
paracetamol
5
role calcium
4
calcium paracetamol
4
paracetamol acetaminophen
4
acetaminophen cytotoxicity
4

Similar Publications

In this Highlights article, we present insights into the use of simple cell lines in neuroinflammation research, highlighting key findings from our recent investigations. Simple cell lines, including HEK, PC12, SHSY5Y, and N2a cells, provide valuable insights into critical signaling pathways and hidden facets of the neuroinflammatory landscape. Focusing on specific outcomes, including the impact of interleukin-6 (IL-6) and acid-sensing ion channels (ASIC1a), the study sheds light on neuroinflammatory processes.

View Article and Find Full Text PDF

Effect of anemoside B4 on ameliorating cerebral ischemic/reperfusion injury.

Iran J Basic Med Sci

January 2025

Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.

Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.

View Article and Find Full Text PDF

Background: Several cases of pheochromocytoma presenting with hypertensive crises after anesthesia induction, possibly caused by rocuronium injection, have been reported. Rocuronium has two compositions: rocuronium bromide (RB) in sodium acetate hydrate/acetic acid buffer solution (acetic acid vehicle) and RB in glycine/hydrochloric acid buffer solution (hydrochloric acid vehicle). This study assessed the effect of rocuronium composition on the release of catecholamine from PC-12 rat adrenal pheochromocytoma cells.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!