Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D,L-methionine moiety.

Molecules

Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Al. I. Cuza University, Bd. Carol I, no. 11, Iasi, Romania.

Published: January 2007

New 1,3,4-thiadiazole, 5a-e, and 1,2,4-triazolecompounds 6a-c, containing a D,L-methionine moiety were synthesized by intramolecular cyclization of 1,4-disubstituted thiosemicarbazides 4a-e in acid and alkaline media, respectively. The potential antimicrobial effects of the synthesized compounds were investigated using the Staphylococcus aureus ATCC 25923, Bacillus antracis ATCC 8705, Bacillus cereus ATCC 10987, Sarcina lutea ATCC 9341 and Escherichia coli ATCC 25922 strains. The newly synthesized compounds exhibited promising activities against Bacillus antracis and Bacillus cereus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149405PMC
http://dx.doi.org/10.3390/12010103DOI Listing

Publication Analysis

Top Keywords

dl-methionine moiety
8
synthesized compounds
8
bacillus antracis
8
bacillus cereus
8
atcc
5
synthesis antimicrobial
4
antimicrobial activity
4
activity 134-thiadiazole
4
134-thiadiazole 124-triazole
4
124-triazole compounds
4

Similar Publications

S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases, enabling covalent derivatization and subsequent labeling of their cognate target sites in DNA or RNA. Although AdoMet analogs with saturated aliphatic chains are less popular than propargylic ones, they can be useful for dedicated studies that require certain chemical derivatization.

View Article and Find Full Text PDF

Ferroptosis is mediated by lipid peroxidation of phospholipids containing polyunsaturated fatty acyl moieties. Glutathione, the key cellular antioxidant capable of inhibiting lipid peroxidation via the activity of the enzyme glutathione peroxidase 4 (GPX-4), is generated directly from the sulfur-containing amino acid cysteine, and indirectly from methionine via the transsulfuration pathway. Herein we show that cysteine and methionine deprivation (CMD) can synergize with the GPX4 inhibitor RSL3 to increase ferroptotic cell death and lipid peroxidation in both murine and human glioma cell lines and in ex vivo organotypic slice cultures.

View Article and Find Full Text PDF

On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles.

Int J Biol Macromol

February 2023

Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain. Electronic address:

Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits.

View Article and Find Full Text PDF

Chemoselective Methionine Labelling of Recombinant Trastuzumab Shows High In Vitro and In Vivo Tumour Targeting.

Chemistry

February 2023

Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia.

A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation.

View Article and Find Full Text PDF

Methyltransferases (MTases) have become an important tool for site-specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S-adenosyl-l-methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!