Transposition (the movement of discrete segments of DNA, resulting in rearrangement of genomic DNA) initiates when transposase forms a dimeric DNA-protein synaptic complex with transposon DNA end sequences. The synaptic complex is a prerequisite for catalytic reactions that occur during the transposition process. The transposase-DNA interactions involved in the synaptic complex have been of great interest. Here we undertook a study to verify the protein-DNA interactions that lead to synapsis in the Tn5 system. Specifically, we studied (i) Arg342, Glu344, and Asn348 and (ii) Ser438, Lys439, and Ser445, which, based on the previously published cocrystal structure of Tn5 transposase bound to a precleaved transposon end sequence, make cis and trans contacts with transposon end sequence DNA, respectively. By using genetic and biochemical assays, we showed that in all cases except one, each of these residues plays an important role in synaptic complex formation, as predicted by the cocrystal structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168436 | PMC |
http://dx.doi.org/10.1128/JB.00524-07 | DOI Listing |
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
J Undergrad Neurosci Educ
December 2024
Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568.
It is well-understood that active learning approaches have positive learning outcomes and improve retention. Active learning strategies for the neuroscience laboratory setting have been extensively developed. Fewer active learning approaches are available for the traditional lecture-based setting.
View Article and Find Full Text PDFJ Neurosci
January 2025
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited.
View Article and Find Full Text PDFNeuroscience
January 2025
Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA.
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA.
Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!