Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).

J Hered

The Division of Evolutionary and Environmental Biology, Graham Kerr Building, University of Glasgow, Scotland, UK.

Published: January 2008

Little is known about the genetic and molecular mechanisms that underlie adaptive phenotypic variation in natural populations or whether similar genetic and molecular mechanisms are utilized when similar adaptive phenotypes arise in independent populations. The threespine stickleback (Gasterosteus aculeatus) is a good model system to investigate these questions because these fish display a large amount of adaptive phenotypic variation, and similar adaptive phenotypes have arisen in multiple, independent stickleback populations. A particularly striking pattern of parallel evolution in sticklebacks is reduction of skeletal armor, which has occurred in numerous freshwater locations around the world. New genetic and genomic tools for the threespine stickleback have made it possible to identify genes that underlie loss of different elements of the skeletal armor. Previous work has shown that regulatory mutations at the Pitx1 locus are likely responsible for loss of the pelvic structures in independent stickleback populations from North America and Iceland. Here we show that the Pitx1 locus is also likely to underlie pelvic reduction in a Scottish population of threespine stickleback, which has apparently evolved pelvic reduction under a different selection regime than the North American populations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esm066DOI Listing

Publication Analysis

Top Keywords

threespine stickleback
16
pelvic reduction
12
parallel evolution
8
reduction scottish
8
stickleback gasterosteus
8
gasterosteus aculeatus
8
genetic molecular
8
molecular mechanisms
8
adaptive phenotypic
8
phenotypic variation
8

Similar Publications

Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.

View Article and Find Full Text PDF

Field studies of social behaviour are challenging due to the need to record or infer interactions between multiple individuals, often under suboptimal environmental conditions or with potential disturbance by observers. Due to the limited field techniques available, we present a novel method to quantify social behaviours in the field by comparing the counts of individuals caught in traps across multiple locations sampled simultaneously. The distribution of individuals between traps gives the extent of aggregation, and phenotypic data allow for inference of non-random assortment.

View Article and Find Full Text PDF

Territorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components.

View Article and Find Full Text PDF

Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior.

J Proteome Res

January 2025

Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801, United States.

Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish () that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs.

View Article and Find Full Text PDF

Co-profiling of single-cell gene expression and chromatin landscapes in stickleback pituitary.

Sci Data

January 2025

Laboratory of Molecular Ecological Genetics, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.

The pituitary gland is a key endocrine gland with various physiological functions including metabolism, growth, and reproduction. It comprises several distinct cell populations that release multiple polypeptide hormones. Although the major endocrine cell types are conserved across taxa, the regulatory mechanisms of gene expression and chromatin organization in specific cell types remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!