Dopamine modulation of prefrontal cortex interneurons occurs independently of DARPP-32.

Cereb Cortex

Medical University of South Carolina, Department of Neuroscience, BSB 403, 173 Ashley Avenue, Charleston, SC 29425, USA.

Published: April 2008

Dopamine (DA) exerts a strong influence on inhibition in prefrontal cortex. The main cortical interneuron subtype targeted by DA are fast-spiking gamma-aminobutyric acidergic (GABAergic) cells that express the calcium-binding protein parvalbumin. D1 stimulation depolarizes these interneurons and increases excitability evoked by current injection. The present study examined whether this direct DA-dependent modulation of fast-spiking interneurons involves DARPP-32. Whole-cell patch-clamp recordings were made from fast-spiking interneurons in brain slices from DARPP-32 knockout (KO) mice, wild-type mice, and rats. Low concentrations of DA (100 nM) increased interneuron excitability via D1 receptors, protein kinase A, and cyclic adenosine 3',5'-monophosphate in slices from both normal and DARPP-32 KO mice. Immunohistochemical staining of slices from normal animals revealed a lack of colocalization of DARPP-32 with calcium-binding proteins selective for fast-spiking interneurons, indicating that these interneurons do not express DARPP-32. Therefore, although DARPP-32 impacts cortical inhibition through a previously demonstrated D2-dependent regulation of GABAergic currents in pyramidal cells, it is not involved in the direct D1-mediated regulation of fast-spiking interneurons.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhm133DOI Listing

Publication Analysis

Top Keywords

fast-spiking interneurons
16
prefrontal cortex
8
slices normal
8
interneurons
7
darpp-32
7
fast-spiking
5
dopamine modulation
4
modulation prefrontal
4
cortex interneurons
4
interneurons occurs
4

Similar Publications

The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders.

Rev Neurosci

January 2025

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.

Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors.

View Article and Find Full Text PDF

Binocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways.

View Article and Find Full Text PDF

Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!