Parallel GEGA was constructed by incorporating grammatical evolution (GE) into the parallel genetic algorithm (GA) to improve reservoir water quality monitoring based on remote sensing images. A cruise was conducted to ground-truth chlorophyll-a (Chl-a) concentration longitudinally along the Feitsui Reservoir, the primary water supply for Taipei City in Taiwan. Empirical functions with multiple spectral parameters from the Landsat 7 Enhanced Thematic Mapper (ETM+) data were constructed. The GE, an evolutionary automatic programming type system, automatically discovers complex nonlinear mathematical relationships among observed Chl-a concentrations and remote-sensed imageries. A GA was used afterward with GE to optimize the appropriate function type. Various parallel subpopulations were processed to enhance search efficiency during the optimization procedure with GA. Compared with a traditional linear multiple regression (LMR), the performance of parallel GEGA was found to be better than that of the traditional LMR model with lower estimating errors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2007.07.014DOI Listing

Publication Analysis

Top Keywords

water quality
8
incorporating grammatical
8
grammatical evolution
8
evolution parallel
8
parallel genetic
8
parallel gega
8
parallel
5
improvement remote
4
remote monitoring
4
monitoring water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!